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Abstract. In this paper, we study the twisted Fourier-Mukai partners of abelian surfaces.
Following the work of Huybrechts [31], we introduce the twisted derived equivalences (also called
derived isogenies) between abelian surfaces. We show that there is a twisted derived Torelli
theorem for abelian surfaces over algebraically closed fields with characteristic ̸= 2, 3. Over the
complex numbers, the derived isogenies correspond to rational Hodge isometries between the
second cohomology groups, which is in analogy to the work of Huybrechts and Fu–Vial on K3
surfaces. Their proof relies on the global Torelli theorem over C, which is missing in positive
characteristics. To overcome this issue, we firstly extend a trick given by Shioda on integral
Hodge structures, to rational Hodge structures, ℓ-adic Tate modules and F -crystals. Then we
make use of Tate’s isogeny theorem to give a characterization of the derived isogenies between
abelian surfaces via so called principal isogenies. As a consequence, we show the two abelian
surfaces are principally isogenous if and only if they are derived isogenous.
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1. Introduction

1.1. Background. In the study of abelian varieties, a natural question is to classify the Fourier-
Mukai partners of abelian varieties. Due to Orlov and Polishchuk’s derived Torelli theorem for
abelian varieties in (cf. [52, 54]), there is a geometric/cohomological classification of derived
equivalences between them. More generally, one can consider the twisted derived equivalence or
so called derived isogeny between abelian varieties in the spirit of [31]: two abelian varieties X
and Y are derived isogenous if they can be connected by derived equivalences between twisted
abelian varieties, i.e. there exist twisted abelian varieties (Xi, αi) and (Xi, βi) such that there
is a zig-zag of derived equivalences

Db(X,α) Db(X1, β1)

Db(X1, α2) Db(X2, β2)

...

Db(Xn, αn+1) Db(Y, βn)

≃

≃

≃

(1.1.1)

where Db(X,α) is the bounded derived category of α-twisted coherent sheaves on X.
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In [60], Stellari proved that derived isogenous complex abelian surfaces are isogenous using
the the Kuga–Satake varieties associated to their transcendental lattices (cf. Theorem 1.2 in
loc.cit.). However, the converse is not true as there are isogenous abelian surfaces which are
not derived isogenous (cf. Remark 4.4 (ii) in loc.cit.). The main goal of this paper is to give
a cohomological and geometric classification of derived isogenies between abelian surfaces over
algebraically closed fields of arbitrary characteristic.

1.2. Twisted derived Torelli theorem for abelian surfaces in characteristic zero. Let
us first classify the derived isogenous between abelian surfaces in term of isogenies. For this
purpose, we need to introduce a new type of isogeny. We say two abelian surfaces X and Y are
principally isogenous if there is a isogeny f from X or X̂ to Y of square degree. The first main
result is

Theorem 1.2.1. Let X and Y be two abelian surfaces over k = k̄ with char(k) = 0. The
following statements are equivalent.
(i) X and Y are derived isogenous.
(ii) X and Y are principally isogenous.

A notable fact for abelian surfaces is that besides their 1st cohomology groups, their 2nd

cohomology groups also carry rich structures. In the untwisted case, Mukai and Orlov have
showed [48, 52] that

Db(X) ∼= Db(Y )⇔ H̃(X,Z) ∼=Hdg H̃(Y,Z)⇔ T(X) ∼=Hdg T(Y ),

where H̃(X,Z) and H̃(Y,Z) are the Mukai lattices, T(X) ⊆ H2(X,Z) and T(Y ) ⊆ H2(Y,Z)
denote the transcendental lattices, ∼=Hdg means integral Hodge isometries (cf. [12, Theorem
5.1]). The following result can be viewed as a generalization of Mukai and Orlov’s result.

Corollary 1.2.2. The statement (i) is also equivalent to the following equivalent conditions
(iii) the associated Kummer surfaces Km(X) and Km(Y ) are derived isogenous;
(iv) Chow motives h(X) ∼= h(Y ) are isomorphic as Frobenius exterior algebras;
(v) even degree Chow motives heven(X) ∼= heven(Y ) are isomorphic as Frobenius algebra.

When k = C, then the conditions above are also equivalent to
(vi) H2(X,Q) ∼= H2(Y,Q) as a rational Hodge isometry;
(vii) H̃(X,Q) ∼= H̃(Y,Q) as a rational Hodge isometry;
(viii) T(X)⊗Q ∼= T(Y )⊗Q as a rational Hodge isometry.

Here, the motive h(X) admits a canonical motivic decomposition produced by Deninger–
Murre [19]

h(X) =
4⊕
i=0

hi(X) (1.2.1)

such that H∗(hi(X)) ∼= Hi(X) for any Weil cohomology H∗(−). It satisfies hi(X) =
∧i h1(X)

for all i, h4(X) ≃ 1(−4) and
∧i h1(X) = 0 for i > 4 (cf. [37]). The motive h(X) is a Frobenius

exterior algebra objects in the category of Chow motives over k and the even degree part

heven(X) =
2⊕

k≥0

2k∧
h1(X) (1.2.2)

forms a Frobenius algebra object in the sense of [23].
The equivalences (i) ⇔ (iv) ⇔ (v) are motivic realizations of derived isogenies between

abelian surfaces, which can be viewed as an analogy of the motivic global Torelli theorem on K3
surfaces (cf. [31, Conjecture 0.3] and [23, Theorem 1]). The equivalences (i)⇔ (iii)⇔ (viii) can
be viewed as a generalization of [60, Theorem 1.2]. The Hodge-theoretic realization (i) ⇔ (vi)
follows a similar strategy of [31, Theorem 0.1], which makes use of Shioda’s period map and
Cartan–Dieudonné decomposition of a rational isometry. The equivalences (vi)⇔ (vii)⇔ (viii)
follow from the Witt cancellation theorem (see §5.3).
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1.3. Shioda’s trick. The proof of Theorem 1.2.1 is concluded by a new ingredient so called
rational Shioda’s trick on abelian surfaces. The original Shioda’s trick in [58] plays a key role
in the proof of Shioda’s global Torelli theorem for abelian surfaces, which links the weight-1
integral Hodge structure to the weight-2 integral Hodge structure of an abelian surface. We
generalize it in the following form.

Theorem 1.3.1 (Shioda’s trick, see §4). Let X and Y be two complex abelian surfaces. Then
for any admissible Hodge isometry

ψ : H2(X,Q)
∼−→ H2(Y,Q)

we can find an isogeny f : Y → X of degree d2 such that ψ = f∗

d .

As an application, the generalized Shioda’s trick gives the algebraicity of some cohomological
cycles. For any integer d, one can consider a Hodge similitude of degree d

H2(X,Q)
∼−→ H2(Y,Q),

called a Hodge isogeny of degree d. Due to the Hodge conjecture on products of abelian surfaces,
we know that every Hodge isogeny is algebraic. Our generalized Shioda’s trick actually shows
that it is induced by certain isogenies. Similarly, we prove the ℓ-adic and p-adic Shioda’s trick,
which gives a proof of Tate conjecture for isometries between the 2nd-cohomology groups (as
either Galois-modules or crystals) of abelian surfaces over finitely generated fields. See Corollary
4.6.4 for more details.

1.4. Results in positive characteristic. The second part of this paper is to investigate the
twisted derived Torelli theorem over positive characteristic fields. Due to the absence of a sat-
isfactory global Torelli theorem, one can not follow the argument in characteristic zero directly.
Instead, we need some input from p-adic Hodge theory. Our formulation is the following.

Theorem 1.4.1. Let X and Y be two abelian surfaces over k = k̄ with char(k) = p > 3. Then
the following statements are equivalent.
(i′) X and Y are prime-to-p derived isogenous.
(ii′) X and Y are prime-to-p principally isogenous.

Moreover, in case that X is supersingular, then Y is derived isogenous to X if and only if Y is
supersingular.

Here, we say a derived isogeny as (1.1.1) is prime-to-p if its crystalline realization is integral
(see Definition 3.1.3 for details), which is a condition somewhat technical. The main ingredients
in the proof of Theorem 1.4.1 are the lifting-specialization technique, which works well for prime-
to-p derived isogenies. Actually, our method shows that there is an implication (i′) ⇒ (ii′) for
derived isogenies which are not necessarily being prime-to-p (see Theorem 6.5.1). Conversely, we
believe that the existence of quasi-liftable isogenies will imply the existence of derived isogeny
(see Conjecture 6.5.2). The only obstruction is the existence of the specialization of non-prime-
to-p derived isogenies between abelian surfaces. See Remark 6.3.3.

Another natural question is whether two abelian surfaces are derived isogenous if and only
if their associated Kummer surfaces are derived isogenous over positive characteristic fields.
Unfortunately, we can not fully prove the equivalence. Instead, we provide a partial solution of
this question. See Theorem 6.5.3 for more details.

Similarly, one may ask whether such results also hold for K3 surfaces. Recall that two K3
surfaces S and S′ over a finite field Fq are (geometrically) isogenous in the sense of [65] if there
exists an algebraic correspondence Γ which induces an isometry of Gal(F̄p/k)-modules

Γ∗
ℓ : H

2
ét(SF̄p

,Qℓ)
∼−→ H2

ét(S
′
F̄p
,Qℓ),

for all ℓ ∤ p and an isometry of isocrystals

Γ∗
p : H

2
crys(Sk/K)

∼−→ H2
crys(S

′
k/K),
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for some finite extension k/Fq and the fraction field K of W =W (k). Then we say the isogeny
is prime-to-p if the isometry Γ∗

p is integral, i.e., Γ∗
p

(
H2

crys(Sk/W )
)
= H2

crys(S
′
k/W ). Then we

have a formulation of the twisted derived Torelli conjecture for K3 surfaces.

Conjecture 1.4.2. For two K3 surfaces S and S′ over a finite field k with char(k) = p > 0,
then the following are equivalent.

(a) There exists a prime-to-p derived isogeny Db(S) ∼ Db(Y ).
(b) There exists a prime-to-p isogeny between S and S′.

The implication (a)⇒ (b) is clear, while the converse remains open. In the case of Kummer
surfaces, our results provide some evidence of Conjecture 1.4.2. We shall mention that recently
Bragg and Yang have studied the derived isogenies between K3 surfaces over positive charac-
teristic fields and they provided a weaker version of the statement in Conjecture 1.4.2 (cf. [9,
Theorem 1.2]).

Organization of the paper. We will start with two preliminary sections, in which we include
some well-known constructions and facts: In Section 2, we perform the computations of the
Brauer group of abelian surfaces via the Kummer construction. This allows us to prove the
lifting lemma for twisted abelian surfaces of finite height. In Section 3, we collect the knowledge
on derived isogenies between abelian surfaces and their cohomological realizations, which include
the motivic realization, the B-field theory, the twisted Mukai lattices, a filtered Torelli theorem
and its relation to the moduli space of twisted sheaves.

In Section 4, we revise Shioda’s work and extend it to rational Hodge isogenies. This is the key
ingredient for proving Theorem 1.2.1. Furthermore, after introducing the admissible ℓ-adic and
p-adic bases, we prove the ℓ-adic and p-adic Shioda’s trick for admissible isometries on abelian
surfaces. As an application, we prove the algebracity of these isometries on abelian surfaces over
finitely generated fields.

Section 5 and 6 are devoted to proving Theorem 1.2.1 and Theorem 1.4.1. Theorem 1.2.1 is
essentially Theorem 5.1.3 and Theorem 5.2.5. The proof of Theorem 1.4.1 is much more subtle.
We establish the lifting and the specialization theorem for prime-to-p derived isogeny. Then
one can conclude (i′) ⇔ (ii′) from Theorem 1.2.1 for abelian surfaces of finite heights. At the
end of Section 6, we follow Bragg and Lieblich’s twistor line argument in [7] to conclude the
supersingular case of Theorem 1.4.1.

Acknowledgement. The authors are grateful to the useful comments by Ziquan Yang.

Notations and Conventions. Throughout this paper, we will use the symbol k to denote a
field. If k is a perfect field and char k = p > 0, we denote W := W (k) for the ring of Witt
vectors in k, which is equipped with a morphism σ : W →W induced by the Frobenius map on
k. If k is not perfect, we choose a Cohen ring W ⊂ W (k̄) with W/pW = k, inside the ring of
Witt vectors in a fixed algebraic closure k̄ of k.

Let X be a smooth projective variety over k. We denote by H•
ét(Xk̄,Zℓ) the ℓ-adic étale

cohomology group of Xk̄. The Zℓ-module H•
ét(Xk̄,Zℓ) has been endowed with a canonical Gk =

Gal(k̄/k)-action. We use Hicrys(X/W ) to denote the i-th crystalline cohomology group of X over
the p-adic base W ↠ k, which is a W -module. It is endowed with a natural σ-linear map

φ : Hicrys(X/W )→ Hicrys(X/W )

induced from the absolute Frobenius morphism FX : X → X.
We denote by Db(X) the bounded derived category of coherent sheaves X. A derived equiv-

alence means a k-linear exact equivalence between triangulated categories in the form

Ψ: Db(X)
∼−→ Db(Y ).

If Ψ is of the form
ΨP (E) = Rq∗(p

∗E ⊗ P),
then we call it a Fourier–Mukai transform with a kernel P ∈ Db(X × Y ) and the projections
p : X × Y → X, q : X × Y → Y , and X,Y are called a pair of Fourier–Mukai partners.
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When X is an abelian variety over k, we denote X̂ for its dual abelian variety and X[p∞] for
the associated p-divisible group. There is a natural identification of its contravariant Dieudonné
module with its first crystalline cohomology:

D(X[p∞]) :=M(X[p∞]∨) ∼= H1
crys(X/W ),

where M(−) is the Dieudonné module functor on p-divisible groups defined in [44, 17].
For any abelian group G and an integer n, we denote G[n] for the subgroup of n-torsions in

G and G{n} for the union of all n-power torsions.
For a lattice L in Z or Q and an integer n, we use L(n) for the lattice twisted by n, i.e.,

L = L(n) as Z or Q-module, but

⟨x, y⟩L(n) = n⟨x, y⟩L.

The reader shall not confuse it with the Tate twist.

2. Twisted abelian surface

In this section, we give some preliminary results in the theory of twisted abelian surfaces,
especially for those in positive characteristic. As most of these results are well-known in char-
acteristic zero, the readers who are only interested in this case may skip this part.

We will frequently use the terminology “gerbe”, on which the readers may refer [25] or [39] for
more details.

2.1. Gerbes on abelian surfaces and associated Kummer surfaces. Let X be an abelian
surface over a field k and let X → X be a µn-gerbe over X. This corresponds to a pair (X,α)
for some α ∈ H2

fl(X,µn), where the cohomology group is with respect to the flat topology. Since
µn is commutative, there is a bijection of sets

{µn-gerbes on X}/ ≃ ∼−→ H2
fl(X,µn),

where ≃ is the µn-equivalence defined as in [25, IV.3.1.1]. We may write α = [X ]. The Kummer
exact sequence induces a surjective map

H2
fl(X,µn)→ Br(X)[n] (2.1.1)

where the right-hand side is the cohomological Brauer group Br(X) := H2
ét(X,Gm). For any µn

gerbe X on X, there is an associated Gm-gerbe on X via (2.1.1), denoted by XGm . Let X (m)

be the gerbe corresponding to cohomological class m[X ] ∈ H2
fl(X,µn). If [XGm ] = 0, then we

will call X an essentially-trivial µn-gerbe.
If k has characteristic p ̸= 2, there is an associated Kummer surface X̃ constructed as follows:

X̃ X

Km(X) X/ι

σ̃

π

σ

(2.1.2)

where
• ι is the involution of X;
• σ is the crepant resolution of quotient singularities;
• σ̃ is the blow-up of X along the closed subscheme X[2] ⊂ X. Its birational inverse is

denoted by σ̃−1.

Let E ⊂ X̃ be the exceptional locus of σ̃. Then we have a composition of the sequence of
morphisms

(σ̃−1)∗ : Br(X̃)→ Br(X̃ \ E) ∼= Br(X \X[2]) ∼= Br(X).

Here, the last isomorphism Br(X) → Br(X \ X[2]) is due to Grothendieck’s purity theorem
(cf. [27, 63]).
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Proposition 2.1.1. When k = k̄ and char(k) ̸= 2, the (σ̃−1)∗π∗ induces an isomorphism
between cohomological Brauer groups

Θ: Br(Km(X))→ Br(X). (2.1.3)

In particular, when X is supersingular over k̄, then Br(X) is isomorphic to the additive group
k̄.

Proof. For torsions of (2.1.3) whose orders are coprime to p, the proof is essentially the same as
[59, Proposition 1.3] by the Hochschild–Serre spectral sequence and the fact that H2(Z/2Z, k∗) =
0 (cf. [64, Proposition 6.1.10]) as char(k) > 2. See also [60, Lemma 4.1] for the case k = C. For
p-primary torsion part, we have

Br(Km(X)){p} ∼= Br(X)ι{p}
from the Hochschild–Serre spectral sequence, where Br(X)ι is the ι-invariant subgroup. Hence
it suffices to prove that ι acts trivially on Br(X).

In fact, H2
fl(X,µp) can be ι-equivariantly embedded to H2

dR(X/k) by de Rham–Witt theory
(cf. [50, Proposition 1.2]). The action of ι on H2

dR(X/k) = ∧2H1
dR(X/k) is the identity, as its

action on H1
dR(X/k) is given by x 7→ −x. Thus the involution on H2

fl(X,µp) is trivial. Then by
the exact sequence

0→ NS(X)⊗ Z/p→ H2
fl(X,µp)→ Br(X)[p]→ 0,

we can deduce that Br(X)[p] is invariant under the involution. Furthermore, for pn-torsions with
n ≥ 2, we can proceed by induction on n. Assume that all elements in Br(X)[pd] are ι-invariant
if 1 ≤ d < n. By abuse of notation, we still use ι to denote the induced map Br(X) → Br(X).
For α ∈ Br(X)[pn], pα ∈ Br(X)[pn−1] is ι-invariant. This gives

pα = ι(pα) = pι(α),

which implies α− ι(α) ∈ Br(X)[p]. Applying ι on α− ι(α), we can obtain

α− ι(α) = ι(α)− α.
It implies α − ι(α) is also a 2-torsion element. Since p is coprime to 2, we can conclude that
α = ι(α).

If X is supersingular, then Km(X) is also supersingular. We have already known that the
Brauer group of a supersingular K3 surface is isomorphic to k by [2]. Thus Br(X) ∼= k. □

Remark 2.1.2. In the case A being supersingular, the method of [2] can not be directly applied
to show that Br(X) = k as H1

fl(X,µpn) is not trivial in general for an abelian surface X.

Remark 2.1.3. For abelian surfaces over a non-algebraically closed field or more general ring,
we still have the canonical map (2.1.3), but it is not necessarily an isomorphism.

Remark 2.1.4. For a cohomology theory H•(−) with nice properties e.g. satisfying the blow-up
formula, we have a canonical decomposition

H2(Km(X)) ∼= H2(X)⊕ π∗Σ,

where Σ is the summand in H2(X̃) generated by the exceptional divisors of σ̃.

2.2. A lifting lemma. In [5], Bragg has shown that a twisted K3 surface can be lifted to
characteristic 0. Though his method can not be directly applied to twisted abelian surfaces, one
can still obtain a lifting result for twisted abelian surfaces via using the Kummer construction.
The following result will be frequently used in this paper.

Lemma 2.2.1. Let X → X be a Gm-gerbe on an abelian surface X over k = k̄. Suppose
char(k) > 2 and X has finite height. Then there exists a lifting X → X of X → X over some
discrete valuation ring W ′ whose residue field is k such that the specialization map

NS(XK′)→ NS(X)

on Néron-Severi groups is an isomorphism. Here, K ′ is the fraction field of W ′ and XK′ is the
generic fiber of X → SpecW ′.
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Proof. The existence of such lifting is ensured by [5, Theorem 7.10], [38, Lemma 3.9] and Propo-
sition 2.1.1. Roughly speaking, let S → Km(X) be the associated twisted Kummer surface via
the isomorphism (2.1.3) in Proposition 2.1.1. Then [5, Theorem 7.10] asserts that there exists
a lifting S→ S of S → Km(X) such that the specialization map of Néron-Severi groups is an
isomorphism

NS(XK′)
∼−→ NS(X). (2.2.1)

Then [38, Lemma 3.9] says that one can find a lifting X/W ′ of X such that Km(X ) ∼= S over
W ′. According to Remark 2.1.3, there is a canonical map

Θ : Br(Km(X ))→ Br(X )
as in (2.1.3). Consider the image Θ([S]) ∈ Br(X ), one can take X → X to be the associated
twisted abelian surface. Then X→ X will be a lifting of X → X as the restriction of the Brauer
class [X] to X is [X ]. □

3. Cohomological realizations of derived isogeny

In this section, we briefly recall the action of derived isogenies on the cohomology groups of
abelian surfaces and define the prime-to-ℓ derived isogenies. This action has the following two
forms

(1) the motivic realization, which induces rational isomorphisms on the cohomology groups;
(2) the realization on the integral twisted Mukai lattices.

The story over C comes back to [66, 33, 31]. Over a general field, we refer [41] for the non-twisted
Mukai realization, [40, 6] for the definition of twisted Mukai lattices, and [30, 23] for the motivic
realization.

Following the works in [41, 28], we extend the filtered Torelli theorem to twisted abelian
surfaces over an algebraically closed field k with char(k) ̸= 2. As a corollary, we show that any
Fourier–Mukai partner of a twisted abelian surface is isomorphic to a moduli space of stable
twisted sheaves on itself or its dual (cf. Theorem 3.4.5).

3.1. Motivic realization of derived isogeny on cohomology groups. In [30, 31], Huy-
brechts shows that (twisted) derived equivalent K3 surfaces over a field k have isomorphic Chow
motives, which also holds for general algebraic surfaces over k (as remarked in §2.4 of loc.cit.).
Moreover, Lie and Vial proved that any twisted derived equivalence induces an isomorphism
between the second component of Chows motives by a weight-argument (cf. [23, §1.2]). In this
part, we record their results for the convenience of the reader. We will focus on abelian surfaces
over k as a typical type of examples.

For any abelian surface X over a field k, one may consider idempotent correspondences π2alg,X
and π2tr,X in CH2(X ×X)Q defined as

π2alg,X :=

ρ∑
i=1

1

deg(Ei · Ei)
Ei × Ei, π2tr,X = π2X − π2alg,X ,

where π2X is the idempotent correspondence given by the Chow–Künneth decomposition (1.2.1)
and Ei are non-isotropic divisors generating the Néron–Severi group NS(Xks) as a orthogonal
basis. Consider the decomposition of h2(X):

h2(X) = h2alg(X)⊕ h2tr(X)

given by π2alg,X and π2tr,X . It is not hard to see h2alg(X) is a Tate motive after base change to the
separable closure ks, whose Chow realization is

CH∗
Q(h

2
alg(Xks)) ∼= NS(Xks)Q.

According to the main result in [14], any derived equivalence Db(X,α)
∼−→ Db(Y, β) can be

uniquely (up to isomorphism) written as a Fourier-Mukai transform with kernel P ∈ Db(X ×
Y, α−1 ⊠ β)

ΦP : Db(X,α)
∼−→ Db(Y, β).



8 ZHIYUAN LI AND HAITAO ZOU

Consider the cycle class

[Γtr] = v2(P) ∈ CH2(X × Y )Q ∼= CH2(X × Y )Q,

where v2(P) is the dimension two component of the Mukai vector of P. It will induce an
isomorphism of motives by a weight argument (cf. [23, §§1.2.3])

[Γtr]2 := π2tr,Y ◦ [Γtr] ◦ π2tr,X : h2tr(X)
∼−→ h2tr(Y ).

Since twisted derived equivalent algebraic surfaces have same Picard number (over k), one can
choose a invertible correspondence

[Γalg] : h
2
alg(X)

∼−→ h2alg(Y ),

whose inverse is given by its transpose (see [23, §3.1] for more details). This gives an isomorphism

[Γ] := [Γtr]2 + [Γalg] : h
2(X)

∼−→ h2(Y ).

Any cohomologlical realization of such isomorphism clearly preserves the Poincaré pairing by
the construction. Therefore, by taking the corresponding cohomological realization, we obtain

Proposition 3.1.1. Assume char(k) = p ̸= 2. Let ℓ be a prime not equal to p. If X and Y are
twisted derived equivalent over k, then [Γ] will induce a Gal(k̄/k)-equivariant isometry

φℓ : H
2
ét(Xk̄,Qℓ)

∼−→ H2
ét(Yk̄,Qℓ). (3.1.1)

Suppose k is perfect, it will induce an isometry between F -isocrystals

φK : H2
crys(X/K)

∼−→ H2
crys(Y/K). (3.1.2)

Remark 3.1.2. The weight-argument in [13, §§1.2.3] actually provides an isomorphism

h(X)
∼−→ h(Y ),

which preserves the even-degree parts

heven(−) :=
2⊕

k=0

h2k(−) ∼=
2⊕

k=0

2k∧
h1(−).

The cohomological realizations in Proposition 3.1.1 are not integral in general. We can in-
troduce the prime-to-ℓ derived isogeny via the integral cohomological realizations, which will be
used in the rest of the paper.

Definition 3.1.3. Let ℓ be a prime and char(k) = p. When ℓ ̸= p, a derived isogeny Db(X) ∼
Db(Y ) given by

Db(X,α) Db(X1, β1)

Db(X1, α2) Db(X2, β2)

...

Db(Xn, αn+1) Db(Y, βn)

≃

≃

≃

is called prime-to-ℓ if each cohomological realization in the zig-zag sequence

φiℓ : H
2
ét(Xi−1,k̄,Qℓ)

∼−→ H2
ét(Xi,k̄,Qℓ)

is integral, i.e. φℓ
(
H2

ét(Xk̄,Zℓ)
)
= H2

ét(Yk̄,Zℓ). In the case ℓ = p, it is called prime-to-p if each
φip : H

2
crys(Xi−1/K)

∼−→ H2
crys(Xi/K) is integral.
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3.2. Mukai lattices and B-fields. At the beginning, we shall remark that we are able to
transfer many cohomological statements for twisted K3 surfaces to the case of twisted abelian
surfaces via the the Kummer construction thanks to Proposition 2.1.1 and 2.1.4. For this
reason, we will omit many technical details which are well-known in the case of K3 surfaces in
the following discussions.

If X is a complex abelian surface, the Mukai lattice is defined as

H̃(X,Z) := H0(X,Z(−1))⊕H2(X,Z)⊕H4(X,Z(1))
with the Mukai pairing

⟨(r, c, χ), (r′, c′, χ′)⟩ := cc′ − rχ′ − r′χ, (3.2.1)
and a pure Z-Hodge structure of weight 2.

For general algebraically closed field k and an abelian surface X over k, we also have the
following notion of Mukai lattices [41, §2].

• Let Ñ(X) be the extended Néron–Severi lattice defined as

Ñ(X) := Z⊕NS(X)⊕ Z,
with Mukai pairing

⟨(r1, c1, χ1), (r2, c2, χ2)⟩ = c1c2 − r1χ2 − r2χ1.

The Chow realization CH∗
Q(−) of

h0(X)⊕ h2alg(X)⊕ h4(X)

can be identified with Ñ(X)Q.
• if char(k) ≥ 0, then the ℓ-adic Mukai lattice is defined on the even degrees of integral
ℓ-adic cohomology of X for ℓ coprime to char(k)

H0
ét(X,Zℓ(−1))⊕H2

ét(X,Zℓ)⊕H4
ét(X,Zℓ(1)),

with Mukai pairing defined in a similar formula as (3.2.1) denoted by H̃(X,Zℓ); or
• if char(k) = p > 0, then the p-adic Mukai lattice H̃(X,W ) is defined on the even degrees

of crystalline cohomology of X with coefficients in W (k)

H0
crys(X/W (k))(−1)⊕H2

crys(X/W (k))⊕H4
crys(X/W (k))(1),

where the twist (i) is given by changing the Frobenius F 7→ p−iF , and the Mukai pairing
is given similarly in the formula (3.2.1).

Hodge B-field. For any B ∈ H2(X,Q), we define the twisted Mukai lattice as

H̃(X,Z;B) := exp(B) · H̃(X,Z) ⊂ H̃(X,Z)⊗Z Q,

which is naturally a lattice in H̃(X,Z), and is equipped with a induced pure Hodge structure of
weight 2 from H̃(X,Q) (cf. [33, Definition 2.3]) i.e.,

H̃0,2(X;B) = exp(B)H̃0,2(X).

The (extended) twisted Néron–Severi lattice is defined to be NS(X;B) := H̃1,1(X,Z;B).
For such B, we can associate a Brauer class αB = exp(B0,2) via the exponential sequence

H2(X,Z)→ H2(X,OX)
exp−−→ H2(X,O∗

X) = Br(X).

Conversely, given α ∈ Br(X), one can find a lift B of α in H2(X,OX) because Br(X) is torsion
and H3(X,Z) is torsion-free. The exponential sequence implies nB ∈ H2(X,Z) for the integer
n such that αn = 1, and so we have B ∈ H2(X,Q). Any such B is called a B-field lift of α.
It is clear that a different choice of such lift B′ satisfies B − B′ ∈ H2(X,Z) by the exponential
sequence, and thus there is a Hodge isometry

exp(B −B′) : H̃(X,Z;B′)
∼−→ H̃(X,Z;B).

This implies that for any Brauer class α ∈ Br(X), the twisted Mukai lattice H̃(X,Z;B) and
the twisted Néron–Severi lattice Ñ(X;B) is independent of the choice of B-field lift B up to
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isometry. Thus for any Gm-gerbe X → X over a complex abelian surface, we also denote Ñ(X )
for the twisted Néron–Severi lattice.

As shown in [33], for any twisted derived equivalence ΦP : Db(X,α)
∼−→ Db(Y, β), we can

associated it with a Hodge isometry

φ = φB,B′ : H̃(X,Z;B)
∼−→ H̃(Y,Z;B′) (3.2.2)

for suitable B-field lifts B,B′ of α and β respectively.

ℓ-adic and crystalline B-field. For the sake of completeness, we will briefly recall the fol-
lowing generalized notions of B-fields in both ℓ-adic cohomology (cf. [40, §3.2]) and crystalline
cohomology (cf. [6, §3]) as an analogue to that in Betti cohomology. We refer [9, §2] for the full
consideration of both ℓ-adic and p-adic case, which is for K3 surfaces, but also works for abelian
surfaces. The readers who are only interested on our main results may skip this part as we only
use these generalized B-fields in the next subsection and in the supersingular twisted derived
Torelli theorem in §§6.6.1.

For a prime ℓ ̸= p and n ∈ N, the Kummer sequence of étale sheaves

1→ µℓn → Gm
(·)n−−→ Gm → 1, (3.2.3)

induces a long exact sequence

· · ·Pic(X)
·ln−→ PicX → H2

ét(X,µℓn)→ Br(X)[ℓn]→ 0.

Taking the inverse limit lim←−n, we get a map

πℓ : H
2
ét(X,Zℓ(1)) = lim←−

n

H2
ét(X,µℓn)→ H2

ét(X,µℓn)↠ Br(X)[ℓn].

Lemma 3.2.1. The map πℓ is surjective.

Proof. We have a short exact sequence (cf. [45, Chap.V, Lemma 1.11])

0→ H2
ét(X,Zℓ(1))/ℓn → H2

ét(X,µℓn)→ H3
ét(X,Zℓ(1))[ℓn]→ 0.

As H3
ét(X,Zℓ(1)) is torsion-free for any abelian surface X, we have an isomorphism

H2
ét(X,Zℓ(1))/ℓn ∼= H2

ét(X,µℓn).

Therefore, the reduction morphism H2
ét(X,Zℓ(1))→ H2

ét(X,µℓn) can be identified with

H2
ét(X,Zℓ(1))↠ H2

ét(X,Zℓ(1))/ℓn,
which is surjective. The assertion then follows from it. □

For any α ∈ Br(X)[ℓn] such that ℓ ̸= p, let Bℓ(α) := π−1
ℓ (α), which is non-empty by Lemma

3.2.1.
For Brauer class α ∈ Br(X)[pn], we need the following commutative diagram via the de

Rham-Witt theory (cf. [35, I.3.2, II.5.1, Théorème 5.14])

0 H2(X,Zp(1)) H2
crys(X/W ) H2

crys(X/W )

H2
fl(X,µpn) H2

crys(X/Wn)

pn:=(⊗Wn)

p−F

d log

(3.2.4)

where H2(X,Zp(1)) := lim←−nH
2
fl(X,µpn). The d log map is known to be injective by flat duality

(cf. [50, Proposition 1.2]). Since the crystalline cohomology groups of an abelian surface are
torsion-free, the mod pn reduction map pn is surjective. Consider the canonical surjective map

πp : H
2
fl(X,µpn)↠ Br(X)[pn],

induced by the Kummer sequence. We set

Bp(α) :=
{
b ∈ H2

crys(X/W )|pn(b) = d log(t) such that πp(t) = α
}
.
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Following [9, Definition 2.16, 2.17], we can introduce the (mixed) B-fields for twisted abelian
surfaces.

Definition 3.2.2. Let ℓ be a prime and let α ∈ Br(X)[ℓn] be a Brauer class of X of order ℓn.
• If ℓ ̸= p, an ℓ-adic B-field lift of α on X is an element B = b

ℓn ∈ H2
ét(X,Qℓ) for some

b ∈ H2
ét(X,Zℓ) such that b ∈ Bℓ(α).

• If ℓ = p, a crystalline B-field lift of α is an element B = b
pn ∈ H2

crys(X/W )[1p ] with
b ∈ H2

crys(X/W ) such that b ∈ Bp(α) .
More generally, for any α ∈ Br(X), a mixed B-field lift of α is a set B = {Bℓ}∪{Bp} consisting
of a choice of an ℓ-adic B-field lift Bℓ of α for each ℓ ̸= p and a crystalline B-field lift Bp of α.

Remark 3.2.3. Not all elements in H2
crys(X/W )[1p ] are crystalline B-fields since the map d log

is not surjective. From the first row in the diagram (3.2.4), we can see B ∈ H2
crys(X/W )[1p ] is a

B-field lift of some Brauer class if and only if F (B) = pB.

For an ℓ-adic or crystalline B-field B = b
m , let exp(B) = 1 + B + B2

2 . We define the twisted
Mukai lattice as

H̃(X,B) =


exp(B)H̃(X,Zℓ) if p ∤ m

exp(B)H̃(X,W ) if m = pn
(3.2.5)

under the Mukai pairing (3.2.1). Moreover, for crystalline B-field B, H̃(X,B) is a W -lattice in
H̃(X,K) stable under the Frobenius action. Sometimes, we denote H̃(X ,Zℓ) and H̃(X ,W ) for
the twisted Mukai lattices if we want to emphasis the coefficient other than the choice of the
B-field lift.

Now let X → X be a µn-gerbe over X whose associated Brauer class is α. The category
Coh(X ) of α-twisted coherent sheaves consists of 1-fold X -twisted coherent sheaves in the sense
of Lieblich (cf. [39]), which is proven to be a Grothendieck category. Let Db(X ) be the bounded
derived category of Coh(X ). Consider the Grothendieck group K0(X ) of Coh(X ). There is a
twisted Chern character map

chB : K0(X )→ H̃(X,B),

see [40, §3.3] and [6, Appendix A3] for ℓ-adic and crystalline cases respectively. The twisted
Chern character chB factors through the rational extended Néron-Severi lattice Ñ(X)Q:

K0(X ) H̃(X,B)

Ñ(X)Q,

chB

chX exp(B) clH

where clH is the cycle class map. The image of K0(X ) in Ñ(X)Q under chB is denoted by
Ñ(X ). For any X -twisted sheaf E on X, the Mukai vector vB(E) is defined to be

chB([E ])
√
Td(X) ∈ H̃(X,B).

Since the Todd class Td(X) is trivial when X is an abelian surface, vB(E) = chB([E ]) ∈ H̃(X,B).
For any Fourier–Mukai transform ΦP : Db(X ) → Db(Y ), [9, Thereom 3.6] shows that there

is an isometry of Mukai lattices for suitable (mixed) B-field lifts B and B′

φB,B′ : H̃(X,B)→ H̃(Y,B). (3.2.6)

3.3. A filtered Torelli Theorem. In [41, 42], Lieblich and Olsson introduce the notion of
filtered derived equivalence and show that filtered derived equivalent K3 surfaces are isomorphic.
In this part, we will give an analogue for (twisted) abelian surfaces, whose proof is much more
simple than the K3 surface case as the bounded derived category of a (twisted) abelian surface
is a generic K3 category in the sense of [32].
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The rational numerical Chow ring CH∗
num(X)Q is equipped with a codimension filtration

FiliCH∗
num(X)Q :=

⊕
i≥k

CHknum(X)Q.

AsX is a surface, we have a natural identification Ñ(X)Q ∼= CH∗
num(X)Q, which gives a filtration

of the rational extended Néron-Severi lattice. Let ΦP be a Fourier-Mukai transform with respect
to P ∈ Db(X×Y ). The equivalence ΦP is called filtered if the induced numerical Chow realization
ΦPCH preserves the codimension filtration. It is not hard to see that ΦP is filtered if and only it
sends the Mukai vector (0, 0, 1) to (0, 0, 1). A filtered twisted Fourier-Mukai transform is defined
in a same way since the twisted Chern character chX maps onto Ñ(X ) ⊂ Ñ(X)Q.

At the cohomological level, the codimension filtration on H̃(X)[1ℓ ] (the prime ℓ depends on
the choice of ℓ-adic or crystalline twisted Mukai lattice) is given by F i = ⊕r≥iH2r(X)[1ℓ ]. Let B
be a B-field lift of [X ]. The filtration on H̃(X,B) is defined by

F iH̃(X,B) = H̃(X,B) ∩ F iH̃(X)[
1

ℓ
].

A direct computation shows that the graded pieces of F • are

Gr0F H̃(X,B) =

{
(r, rB,

rB2

2
)
∣∣∣r ∈ H0(X)

}
,

Gr1F H̃(X,B) =
{
(0, c, c ·B)|c ∈ H2(X)

} ∼= H2(X),

Gr2F H̃(X,B) =
{
(0, 0, s)|s ∈ H4(X)

} ∼= H4(X)(1).

(3.3.1)

Lemma 3.3.1. A twisted Fourier-Mukai transform ΦP : Db(X )→ Db(Y ) is filtered if and only
if its cohomological realization is filtered for certain B-field lifts.

Proof. It is clear that being filtered implies being cohomologically filtered. This is because the
map exp(B) · clH : Ñ(X,Q)→ H̃(X,B) preserves the filtrations for any B-field lift B of [X ].

For the converse, just notice that ΦP is filtered if and only if the induced map ΦP
CH takes the

vector (0, 0, 1) to (0, 0, 1). As ΦP is cohomologically filtered for B, we can see the cohomological
realization of ΦP preserves the graded piece Gr2F in (3.3.1). This implies that ΦP

CH takes (0, 0, 1)
to (0, 0, 1). □

Proposition 3.3.2 (filtered Torelli theorem for twisted abelian surfaces). Suppose k = k̄. Let
X → X and Y → Y be µn-gerbes on abelian surfaces. Then following statements are equivalent

(1) There is an isomorphism between associated Gm-gerbes XGm and YGm .
(2) There is a filtered Fourier-Mukai transform ΦP from X to Y .

Proof. For untwisted case, i.e. X = X and Y = Y , this is exactly [28, Proposition 3.1]. Here
we extend it to the twisted case. As one direction is obvious, it suffices to show that (2) can
imply (1). Set

Px := ΦP(k(x)) = P|{x}×Y ,

the image of the skyscraper sheaf k(x) for a closed point x ∈ X. Since Coh(Y ) admits no
spherical objects (cf. [32, §§3.2]), Db(Y ) are generic K3-categories and the semi-rigid objects
in Db(Y ) are in Coh(Y ) up to shift of degree. We can see there is an integer m such that
H i(Px) = 0 for all i ̸= m and closed points x (cf. [32, Proposition 3.18]). Therefore, there is a
X (−1)×Y -twisted sheaf E ∈ Coh(X (−1)×Y ) such that P ∼= E [m]. Since ΦP

X →Y sends (0, 0, 1)
to (0, 0, 1), Ex is just a skyscraper sheaf on {x}× Y . Then one can proceed the arguments as in
[14, Corollary 5.3] or [29, Corollary 5.22, 5.23] to show that there is an isomorphism f : X → Y
such that f∗([YGm ]) = [XGm ]. □
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3.4. Twisted FM partners via moduli space of twisted sheaves. Keep the notations as
before, we denote by MH(X , v) (or M α

H(X, v)) the moduli stack of H-semistable X -twisted
sheaves with Mukai vector v ∈ Ñ(X ), where H is a v-generic ample divisor on X and α = [X ]
the associated Brauer class of X (cf. [39] or [66]). To characterize the Fourier–Mukai partners
of twisted abelian surfaces via the moduli space of twisted sheaves, we first need the following
criterion on non-emptiness of moduli space of (twisted) sheaves on an abelian surface X in
positive characteristic. In the rest of this section, we will always assume that k = k̄ and
char(k) ̸= 2.

Proposition 3.4.1 (Minamide–Yanagida–Yoshioka, Bragg–Lieblich). Let n be a positive inte-
ger. Assume that either p ∤ n or X is supersingular and n = p. Let X → X be a µn-gerbe
on X. Let v = (r, ℓ, s) ∈ Ñ(X ) be a primitive Mukai vector such that v2 = 0. Fix a v-generic
ample divisor H. If one of the following holds (called positive):

(1) r > 0.
(2) r = 0 and ℓ is effective.
(3) r = ℓ = 0 and s > 0.

then the coarse moduli space MH(X , v) ̸= ∅ and the moduli stack MH(X , v) is a Gm-gerbe on
MH(X , v). Moreover, its coarse moduli space MH(X , v) is an abelian surface.

Proof. If X → X is a µn-gerbe such that p ∤ n, then the statements are proven in [46, Proposition
A.2.1] which is based on a statement of lifting a Brauer classes on X to characteristic 0 which
requires the condition p ∤ n (see Lemma A.2.3 in loc.cit.).

If X is supersingular and X → X is a µp-gerbe, then the assertion will follow from a same
argument in [7, Proposition 4.1.20], as we will see in §6.6.2 that the twisor space of a supersingular
abelian surface can be constructed. □

Remark 3.4.2. Actually, one can obtain the non-emptiness of MH(X , v) for a µn-gerbe X →
X over an abelian surface of finite height with p | n by following [46, Proposition A.2.1] together
with the lifting result 2.2.1.

Remark 3.4.3. In the case X → X is a essentially-trivial µp-gerbe over a supersingular abelian
surface X, this can be proved by a standard lifting argument (see also [22, Proposition 6.9]).
When X → X is non-trivial, Bragg–Lieblich’s approach is to take the universal family of µp-
gerbes

f : X→ A1

on the connected component A1 ⊂ R2 π∗µp which contains X (cf. Corollary 6.6.6). The fibers
of f contain X → X and the trivial µp-gerbe over X. By taking the relative moduli space of
twisted sheaves (with suitable v-generic polarization) on X→ A1, one can see the non-emptiness
of MH(X , v) from the case of essentially trivial gerbes.

Now, we are going to define the twisted Poincaré bundle for a gerbe on a given abelian surface.
Let X → X be a µn-gerbe on X such that p ∤ n. As an element in H2

ét(X,µn), we can (uniquely)
associate X with a symmetric morphism

φn : X[n]→ X̂[n]

by the Weil pairing (cf. [59, Lemma 16.22]). Dually, we have φtn : X̂[n] → X[n], which corre-
sponds to a µn-gerbe on X̂, denoted by X̂ . We can take a separable isogeny f : Y → X such
that f̂ [n] ◦ φn ◦ f [n] = 0. This implies f∗X = 0 ∈ H2

ét(Y, µn). Then there is also a separable
isogeny f t : Ŷ → X̂ given by the Cartier dual ker(f)D ⊂ Ŷ , which satisfies f t∗X̂ = 0. Let P0
be the Poincaré bundle on Y × Ŷ . Consider

f × f t : Y × Ŷ = V → X × X̂
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as a finite étale covering which trivializes the µn-gerbe X × X̂ , we will get a X × X̂ -twisted
sheaf PX on X × X̂ by the étale descent. We have the following commutative diagram

V

Y X × X̂ Ŷ

X X̂

pY qYf×f t

f
pX

qX f t

Proposition 3.4.4. The Fourier–Mukai functor ΦPX : Db(X (−1))→ Db(X̂ ) is a derived equiv-
alence.

Proof. This statement can be checked étale locally on X̂. Then this follows from the Bridgeland’s
criterion (Theorem 2.3 and Theorem 3.3 in [11]) as in [29, Proposition 9.19], since PX is étale
locally the Poincaré bundle: For any skyscraper sheaf k(x) on X, which is naturally a X (−1)-
twisted sheaf, we have the following yoga

ΦPX (k(x))|
Ŷ
= (f t)∗qX∗(PX ⊗ p∗Xk(x))
= qY ∗(f × f t)∗(PX ⊗ p∗Xk(x))
∼= qY ∗(P0 ⊗ p∗Y f∗k(x))
∼=

⊕
y∈f−1(x)

qY ∗(P0 ⊗ p∗Y (k(y))) =
⊕

y∈f−1(x)

P0,y.

where P0,y is the line bundle on {x} × Ŷ corresponding to y ∈ Y ∼= Pic0(Ŷ ). □

The following is an extension of [28, Theorem 1.2].
Theorem 3.4.5. With the same assumptions as in Proposition 3.4.1. Let X → X be µn-gerbe
on an abelian surface X such that p ∤ n. Then the associated Gm-gerbe of any Fourier-Mukai
partner of X is isomorphic to a Gm-gerbe on the moduli space of Y -twisted sheaves MH(Y , v)

with Y being X or X̂ .

Proof. Let M be a Fourier-Mukai partner of X . Let ΦP
M→X be the Fourier-Mukai transform.

Let v be the image of (0, 0, 1) under ΦP
M→X . We can assume v satisfying one of the conditions

in Proposition 3.4.1 by changing X to X̂ if necessary. It is proved that the moduli stack
MH(X , v) is a Gm-gerbe on MH(X , v) in Proposition 3.4.1. Then there is a Fourier-Mukai
transform

ΦP : Db(MH(X , v)(−1))→ Db(X (1)) (3.4.1)
induced by the tautological sheaf P on MH(X , v)×X , whose cohomological realization maps
the Mukai vector (0, 0, 1) to v. Combining it with the derived equivalence

Φ: Db(X )→ Db(M ),

we will obtain a filtered derived equivalence from MH(X , v)(−1) to M (1). This induces an
isomorphism from MH(X , v)(−1) to M

(1)
Gm

by Theorem 3.3.2. □

4. Shioda’s Torelli theorem for abelian surfaces

In [58], Shioda noticed that there is a way to extract the information of the 1st-cohomology
of a complex abelian surface from its 2nd-cohomology, called Shioda’s trick. This established a
global Torelli theorem for complex abelian surfaces via the 2nd-cohomology, which is also a key
step in Pjateckii-Šapiro–Šafarevič’s proof of the Torelli theorem for K3 surfaces (cf. [53, Lemma
4, Theorem 1]).

The aim of this section is to generalize Shioda’s method to all fields and establish an isogeny
theorem for abelian surfaces via the 2nd-cohomology. We will deal with Shioda’s trick for Betti
cohomology, étale cohomology and crystalline cohomology separately.
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4.1. Recap of Shioda’s trick for Hodge isometry. We first recall Shioda’s construction.
Suppose X is a complex abelian surface. Its singular cohomology ring H•(X,Z) is canonically
isomorphic to the exterior algebra ∧•H1(X,Z). Let V be a free Z-module of rank 4. We denote
by Λ the lattice (∧2V, q) where q : ∧2V × ∧2V → Z is the wedge product. After choosing a
Z-basis {vi}1≤i≤4 for H1(X,Z), we have an isometry of Z-lattice Λ

∼−→ H2(X,Z). The set of
vectors

{vij := vi ∧ vj}0≤i<j≤4

clearly forms a basis of H2(X,Z), which will be called an admissible basis of A for its second
singular cohomology. For another complex abelian surface Y , a Hodge isometry

ψ : H2(Y,Z) ∼−→ H2(X,Z)

will be called admissible if det(ψ) = 1, with respect to some admissible bases on X and Y . It is
clear that the admissibility of a morphism is independent of the choice of admissible bases.

In terms of admissible bases, we can view ψ as an element in SO(Λ). On the other hand, we
have the following exact sequence of groups

1→ {±1} → SL4(Z)
∧2

−→ SO(Λ) (4.1.1)

Shioda observed that the image of SL4(Z) in SO(Λ) is a subgroup of index two and does not
contain − idΛ. From this, he proved the following (cf. [58, Theorem 1])

Theorem 4.1.1 (Shioda). For any admissible integral Hodge isometry ψ, there is an isomor-
phism of integral Hodge structures

φ : H1(Y,Z) ∼−→ H1(X,Z)

such that ∧2(φ) = ψ or −ψ.

This is what we call “Shioda’s trick”. As we can assume a Hodge isometry being admissible
after possibly taking the dual abelian variety for one of them, we can obtain the Torelli theorem
for complex abelian surfaces by using the weight two Hodge structures, i.e., X is isomorphic to
Y or its dual Ŷ if and only if there is an integral Hodge isometry H2(X,Z) ∼= H2(Y,Z) (cf. [58,
Theorem 1]).

4.2. Admissible basis. In order to extend Shioda’s work to arbitrary fields, we need to define
admissibility for various cohomology theories (e.g. étale cohomology and crystalline cohomol-
ogy).

Let k be a perfect field with char(k) = 0 or p ≥ 2. Suppose X is an abelian surface over k
and ℓ ∤ p is a prime. For simplicity of notations, we will denote H•(−)R for one of the following
cohomology theories:

(1) if k ↪→ C and R = Z or any number field E, then H•(X)R = H•(X(C), R) the singular
cohomology.

(2) if R = Zℓ or Qℓ, then H•(X)R = H•
ét(Xk̄, R), the ℓ-adic étale cohomology.

(3) if char(k) = p > 0 andR =W orK, then H•(X)R = H•
crys(Xkperf/W ) or H•

crys(Xkperf/W )⊗
K, the crystalline cohomology.

There is an isomorphism between the cohomology ring H•(X)R and the exterior algebra
∧•H1(X)R. We denote by trX : H4(X)R

∼−→ R the corresponding trace map. Then the Poincaré
pairing ⟨−,−⟩ on H2(X)R can be realized as

⟨α, β⟩ = trX(α ∧ β).

Analogous to §4.1, a R-basis {vi} of H1(X)R will be called a d-admissible basis if it satisfies

trX(v1 ∧ v2 ∧ v3 ∧ v4) = d

for some d ∈ R∗. When d = 1, it will be called an admissible basis. For any d-admissible
(resp. admissible) basis {vi}, the associated R-basis {vij := vi ∧ vj}i<j of H2(X)R will also be
called d-admissible (resp. admissible).
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Example 4.2.1. Let {v1, v2, v3, v4} be a R-linear basis of H1(X)R. Suppose

trX(v1 ∧ v2 ∧ v3 ∧ v4) = t ∈ R∗.

For any d ∈ R∗, there is a natural d-admissible R-linear basis {dt v1, v2, v3, v4}

Definition 4.2.2. Let X and Y be abelian surfaces over k.

• a R-linear isomorphism ψ : H1(X)R → H1(Y )R is d-admissible if it takes an admissible
basis to a d-admissible basis.
• a R-linear isomorphism φ : H2(X)R → H2(Y )R is d-admissible if

trY ◦ ∧2 (φ) = d trX

for some d ∈ R∗, or equivalently, it sends an admissible basis to a d-admissible basis.
When d = 1, it will also be called admissible.

The set of d-admissible isomorphisms will be denoted by Isoad,(d)(H1(X)R,H
1(Y )R) and

Isoad,(d)(H2(X)R,H
2(Y )R) respectively.

For any isomorphism φ : H2(X)R
∼−→ H2(Y )R, let det(φ) be the determinant of the matrix

with respect to some admissible bases. It is not hard to see det(φ) is independent of the choice
of admissible bases, and φ is admissible if and only if det(φ) = 1.

Example 4.2.3. For the dual abelian surface X̂, the dual basis {v∗i } with respect to the Poincaré
pairing naturally forms an admissible basis, under the identification H1(X)∨R

∼= H1(X̂)R. Let

ψP : H2(X)R → H2(X̂)R

be the isomorphism induced by the Poincaré bundle P on X × X̂. A direct computation (see
e.g. [29, Lemma 9.3]) shows that ψP is nothing but

−D: H2(X)R
∼−→ H2(X)∨R

∼= H2(X̂)R,

where D is the Poincaré duality. For an admissible basis {vi} of X, its R-linear dual {v∗i } with
respect to Poincaré pairing forms an admissible basis of X̂. By our construction, we can see

D(v12, v13, v14, v23, v24, v34) = (v∗34,−v∗24, v∗23, v∗14,−v∗13, v∗12),

which implies that D is of determinant −1 under these admissible bases. Thus the determinant
of ψP is not admissible.

Example 4.2.4. Let f : X → Y be an isogeny of degree d for some d ∈ Z≥0 between two abelian
surfaces. If d is coprime to ℓ, then it will induce an isomorphism

f∗ : H2(Y )Zℓ

∼−→ H2(X)Zℓ
,

which is d-admissible. If d = n4, then 1
nf

∗ will be an admissible Zℓ-integral isometry with
respect to the Poincaré pairing.

If ℓ ̸= 2, then d or −d is a square in Zℓ. Thus there is some ξ ∈ Z∗
ℓ such that ±d = ξ4.

Therefore, we can always find an admissible Zℓ-integral isomorphism 1
ξ f

∗ : H1(Y )Zℓ
→ H1(X)Zℓ

by possibly changing Y to Ŷ .

Example 4.2.5. Suppose X is an abelian surface over a perfect field k with char(k) = p > 0.
Then F -crystal H1(X)W together with the trace map

trX : H4(X)W
∼−→W

form an abelian crystal, in the sense of [50, §6]. We can see H1(X)W ∼= H1(Y )W as abelian
crystals if and only if there is an admissible isomorphism H1(X)W

∼−→ H1(Y )W .
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4.3. More on admissible basis of F -crystals. In contrast to ℓ-adic étale cohomology, the
semilinear structure on crystalline cohomology from its Frobenius is more tricky to work with.
Therefore, it seems necessary for us to spend more words on the interaction of Frobenius with
admissible bases.

We have the following Frobenius pull-back diagram:

X

X(1) X

Spec(k) Spec(k)

F
(1)
X

FX

σ

Via the natural identification H1
crys(X

(1)/W ) ∼= H1
crys(X/W )⊗σW , the σ-linearization of Frobe-

nius action on H1
crys(X/W ) can be viewed as the injective W -linear map

F (1) :=
(
F

(1)
X

)∗
: H1

crys(X
(1)/W ) ↪→ H1

crys(X/W ).

There is a decomposition H1
crys(X/W ) = H0(X)⊕H1(X) such that

F (1)
(
H1

crys(X
(1)/W )

)
∼= H0(X)⊕ pH1(X), (4.3.1)

and rankWHi = 2 for i = 0, 1, which is related to the Hodge decomposition of the de Rham
cohomology of X/k by Mazur’s theorem; see [4, §8, Theorem 8.26].

The Frobenius map can be expressed in terms of admissible basis. We can choose an admissible
basis {vi} of H1

crys(X/W ) such that

v1, v2 ∈ H0(X) and v3, v4 ∈ H1(X).

Then {pαivi} := {v1, v2, pv3, pv4} forms an admissible basis of H1
crys(X

(1)/W ) under the identi-
fication (4.3.1), since trp ◦ ∧4 F (1) = p2σW ◦ trp. In term of these basis, the Frobenius map can
be written as

F (1)(pαivi) =
∑
j

cijp
αjvj ,

where CX = (cij) forms an invertible 4× 4-matrix with coefficients in W .
Suppose Y is another abelian surface over k and ρ : H1

crys(X/W )→ H1
crys(Y/W ) is an admis-

sible map. Denote ρ(1) for the induced map ρ ⊗σ W : H1
crys(X

(1)/W ) → H1
crys(Y

(1)/W ). The
following lemma is clear.

Lemma 4.3.1. The map ρ is a morphism between F -crystals if and only if C−1
Y · ρ(1) ·CX = ρ,

where “·” denotes by the action of matrix with respect to the chosen admissible bases.

4.4. Generalized Shioda’s trick. Let us review some basic properties of the special orthogonal
group scheme over an integral domain. Let Λ be an even Z-lattice of rank 2n. Then we can
associate it with a vector bundle Λ on Spec(Z) with constant rank 2n equipped with a quadratic
form q over Spec(Z) obtained from Λ. Then the functor

A 7→
{
g ∈ GL(ΛA)

∣∣qA(g · x) = qA(x) for all x ∈ ΛA
}

represents a Z-subscheme of GL(Λ), denoted by O(Λ). There is a homomorphism between
Z-group schemes

DΛ : O(Λ)→ Z/2Z,
which is called the Dickson morphism. It is surjective as Λ is even, and its formation commutes
with any base change. The special orthogonal group scheme over Z with respect to Λ is defined
to be the kernel of DΛ, which is denoted by SO(Λ). Moreover, we have

SO(Λ)Z[ 1
2
]
∼= ker (det : O(Λ)→ Gm)Z[ 1

2
] .
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It is well-known that SO(Λ) → Spec(Z) is smooth of relative dimension n(n−1)
2 and with con-

nected fibers; see [16, Theorem C.2.11] for instance. Moreover, it is well-known that the special
orthogonal group scheme admits a universal covering (i.e., a simply connected central isogeny)

Spin(Λ)→ SO(Λ).

See Appendix C.4 in loc.cit. for the construction. For any ℓ, the special orthogonal group scheme

SO(ΛZℓ
) ∼= SO(Λ)Zℓ

is smooth over Zℓ with connected fibers, which implies its generic fiber SO(ΛQℓ
) is connected.

Thus SO(ΛZℓ
) is clearly connected as a group scheme over Zℓ as SO(ΛQℓ

) ⊂ SO(ΛZℓ
) is dense.

Let V be free Z-module of rank 4 and Λ = ∧2V with the natural pairing. Let R be a ring of
coefficients as listed in §§4.2. Then we have

Lemma 4.4.1. There is an exact sequence of smooth R-group schemes

1→ µ2,R → SL(V )R
∧2(−)R−−−−−→ SO(Λ)R → 1.

(as fppf-sheaves if 1
2 /∈ R.) Moreover, there is an exact sequence

1→ {± id4} → SL(V )(R)
∧2(−)R−−−−−→ SO(Λ)(R)

SN−−→ R∗/(R∗)2, (4.4.1)

where SN is the map of spinor norm (see [3, §3.3] for the definition).

Proof. For the first statement, it suffices to assume R = Spec(k̄) for an algebraically closed field
k̄, where it is clear from a computation.

Note that we have an exact sequence on rational points (cf. [25, Proposition 3.2.2])

1→ µ2(R)→ SL(V )(R)→ SO(Λ)(R)→ H1(Spec(R), µ2).

From the Kummer sequence for µ2, we can see

H1(Spec(R), µ2) ∼= H1
ét(Spec(R), µ2)

∼= R∗/(R∗)2

as Pic(R)[2] = 0.
For the last statement, it is sufficient to see that there is an isomorphism of R-group schemes

SL(V )R
∼−→ Spin(Λ)R such that the following diagram commutes

Spin(Λ)(R)

SL(V )(R) SO(Λ)(R) R∗/(R∗)2

R∗/(R∗)2

∼

SN
∼

The group scheme SL(V ) is simply-connected (as its geometric fibers are semisimple algebraic
group of type A3). Thus the central isogeny SL(V )R → SO(Λ)R forms the universal covering
of SO(Λ)R, which induces an isomorphism SL(V )R

∼−→ Spin(Λ)R by using the Existence and
Isomorphism Theorems over a general ring (see e.g.,[16, Exercise 6.5.2]).

□

Remark 4.4.2. When R = Zℓ, we have

Z∗
ℓ/(Z∗

ℓ )
2 ∼=

{
{±1} if ℓ ̸= 2,

{±1} × {±5} if ℓ = 2.

Thus the image of SL(V )(Zℓ) is a finite index subgroup in SO(Λ)(Zℓ).
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Remark 4.4.3. When R =W (k), we have

W (k)∗/(W (k)∗)2 ∼=


{±1} if k = Fps for p > 2, s ≥ 1

{±1} × {±5} if k = Fps for p = 2, s ≥ 1,

{1} if k = k̄ or ks ⊂ k, char(k) > 2.

as W (k) is Henselian. Thus the wedge map SL(V )(W )→ SO(Λ)(W ) is surjective when k = k̄.

Let VR = H1(X)R. We can see the set

Isoad,(d)(H1(X)R,H
1(Y )R)

is a naturally (right) SL(VR)-torsor if it is non-empty. The wedge product provides a natural
map

∧2 : Isoad,(d)
(
H1(X)R,H

1(Y )R
)
→ Isoad,(d)

(
H2(X)R,H

2(Y )R
)
.

Let {vi} be an admissible basis of H1(X)R and let {v′i} be a d-admissible basis of H1(Y )R
respectively. There is an d-admissible isomorphism ψ0 ∈ Isoad,(d)(H1(X)R,H

1(Y )R) such that
ψ0(vi) = v′i. For a d-admissible isometry φ : H2(X,R)→ H2(Y,R), we can see

φ = ∧2(ψ−1
0 ) ◦ g, for some g ∈ SO(ΛR).

In this way, any d-admissible isomorphism φ can be identified with (unique) element g ∈
SO(Λ)(R) when the admissible bases are fixed. This allows us to deal with d-admissible isomor-
phisms group-theoretically. In particular, we have the following notion of spinor norm.

Definition 4.4.4. The spinor norm of the d-admissible isomorphism φ is defined to the image
of g under SN: SO(Λ)(R)→ R∗/(R∗)2, denoted by SN(φ).

Lemma 4.4.5. The spinor norm SN(φ) is independent of the choice of admissible bases.

Proof. For different choice of admissible bases, we can see the resulted g̃ = KgK−1 for some
K ∈ SO(ΛR). Therefore SN(g̃) = SN(g). □

Remark 4.4.6. When R is a field, the spinor norm can be computed by the Cartan-Dieudonné
decomposition. That means, we can write any g ∈ SO(Λ)(R) as a the composition of reflections:

φbn ◦ φbn−1 ◦ · · · ◦ φb1
for some non-isotropic vectors b1, · · · , bn ∈ ΛR, and SN(g) =

[
(b1)

2 · · · (bn−1)
2(bn)

2
]
.

Lemma 4.4.7. The d-admissible isomorphism φ is a wedge of some d-admissible isomorphism
ψ : H1(X,R)→ H1(Y,R) if and only if SN(φ) = 1.

Proof. The exact sequence (4.4.1) shows that if SN(φ) = SN(g) = 1, then there is some h ∈
SL(VR) such that ∧2(h) = g. Thus we can take ψ = ψ0 ◦ h when SN(φ) = 1, and see that

∧2(ψ) = ∧2(ψ0) ◦ ∧2(h) = φ.

The converse is clear. □

4.5. Shioda’s trick for Hodge isogenies. When k = C and d is an integer, we say an isometry

φ : H2(X,Q)
∼−→ H2(Y,Q)(d)

a Hodge isogeny of degree d if it is also a morphism of Hodge structures. In particular, if d = 1,
then it is the classical Hodge isometry we usually talk about. Clearly, a d-admissible rational
Hodge isomorphism is a Hodge isogeny of degree d. In terms of spinor norms, we can generalize
Shioda’s theorem 4.1.1 to admissible rational Hodge isogenies.

Proposition 4.5.1 (Shioda’s trick on admissible Hodge isogenies).
(1) A d-admissible Hodge isogeny of degree d

φ : H2(X,Q)
∼−→ H2(Y,Q)(d)

is a wedge of some rational Hodge isomorphism ψ : H1(X,Q)
∼−→ H1(Y,Q), if its spinor

norm is a square in Q∗. In this case, the Hodge isogeny is induced by a quasi-isogeny of
degree d2.
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(2) When d = 1, any admissible Hodge isometry φ : H2(X,Q)
∼−→ H2(Y,Q) is induced by an

isogeny f : Y → X of degree n2 for some integer n such that φ = f∗

n .

Proof. Under the assumption of (1), we can find a d-admissible isomorphism ψ by applying the
Lemma 4.4.7. It remains to prove that ψ preserves the Hodge structure, which is essentially the
same as in [58, Theorem 1].

For (2), we shall suppose the spinor norm SN(φ) = nQ∗2 ∈ Q∗/Q∗2. Let E = Q(
√
n). We can

see the base-change H2(X,E)
∼−→ H2(Y,E) is a Hodge isometry with coefficients in E such that

SN(φ) = 1 ∈ E∗/(E∗)2. Then by applying Lemma 4.4.7, we will obtain an admissible (fixing
admissible bases for H1(X,Q) and H1(Y,Q)) Hodge isomorphism ψ : H1(X,E)

∼−→ H1(Y,E). Let

σ : a+ b
√
n⇝ a− b

√
n

be the generator of Gal(E/Q). As we have fixed the Q-linear admissible bases, the wedge map

SL4(E)
∧2

−→ SO(Λ)(E)

is defined over Q, and so is σ-equivariant. Let g be the element in SL4(E) corresponding to ψ.
As ∧2(g) ∈ SO(Λ) ⊂ SO(ΛE), we can see

(∧2(σ(g)) = σ(∧2(g)) = ∧2(g).

which implies that σ(g)g−1 = ± id4 since ker(∧2) = {± id4}. If σ(g) = g, then g ∈ SL4(Q) and
the statement trivially holds. If σ(g) = −g, then g0 =

√
ng is lying in GL4(Q). Let

ψ0 : H
1(X,Q)→ H1(Y,Q)

be the corresponding element of g0 in Isoad,(n
2)
(
H1(X,Q),H1(Y,Q)

)
. As ∧2ψ0 = nφ is a Hodge

isogeny, the part (1) then implies that ψ0 is a Hodge isomorphism as well. Thus ψ0 lifts to a
quasi-isogeny f0 : Y → X and we have

φ = ∧2(ψ) = f∗0
n

: H2(X,Q)→ H2(Y,Q).

□

Remark 4.5.2. If a Hodge isometry ψ : H2(X,Q)
∼−→ H2(Y,Q) is not admissible, i.e., its deter-

minant is −1 with respect to some admissible bases, then we can take its composition with the
isometry ψP induced by the Poincaré bundle as in Example 4.2.3. After that, we can see ψP ◦ψ
is admissible and is induced by an isogeny f : Ŷ → X.

4.6. ℓ-adic and p-adic Shioda’s trick. For the integral ℓ-adic étale cohomology, we have the
following statement similar to Shioda’s trick for integral Betti cohomology.

Proposition 4.6.1 (ℓ-adic Shioda’s trick). Suppose ℓ ̸= 2. For any d-admissible

φℓ : H
2
ét(Yk̄,Zℓ)

∼−→ H2
ét(Xk̄,Zℓ),

we can find a d-admissible Zℓ-isomorphism ψℓ such that ∧2(ψℓ) = φℓ or −φℓ. Moreover, if φℓ
is Gk-equivariant, then ψℓ is also Gk-equivariant after replacing k by some finite extension.

Proof. As Z∗
ℓ/(Z∗

ℓ )
2 = {±1} for any ℓ ̸= 2, the spinor norm of φℓ is equal to ±1. Thus φℓ or

−φℓ is of spinor norm one. Then the first statement follows from Lemma 4.4.7.
Suppose φℓ is Gk-equivariant. We may assume ∧2(ψℓ) = φℓ for simplicity. For any g ∈ Gk,

we have
∧2(g−1ψℓg) = g−1 ∧2 (ψℓ)g = φℓ = ∧2(ψℓ).

Therefore, g−1ψℓg = ±ψℓ. By passing to a finite extension k′/k, we always have g−1ψℓg = ψℓ
for all g ∈ Gk′ which proves the assertion. □

For F -crystals attached to abelian surfaces, we can also play Shioda’s trick.
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Proposition 4.6.2 (p-adic Shioda’s trick). Suppose k is a finite field Fps with odd prime p. For
any d-admissible W -linear isomorphism

φW : H2
crys(Y/W )

∼−→ H2
crys(X/W ),

we can find a d-admissible W -linear isomorphism ρ : H1
crys(Y/W )

∼−→ H1
crys(X/W ) such that

∧2(ρ) = φW or −φW . Moreover, if φW is a morphism of F -crystals, then ρ is an isomorphism
of 2nd-iterate of F -crystals.

Proof. The first statement follows from a similar reason as in Proposition 4.6.1 as W ∗/(W ∗)2 =
{±1} (see Remark 4.4.3).

For the second statement, we assume ∧2(ρ) = φW . If φW commutes with the Frobenius
action, then we have

∧2(C−1
X · ρ

(1) · CY ) = φW .

as in §4.3. Thus C−1
X · ρ(1) · CY = ±ρ, which implies

ρ ◦ FX = ±FY ◦ ρ
by Lemma 4.3.1. Therefore, ρ commutes with the 2nd-iterate Frobenius F 2

X and F 2
Y . □

Remark 4.6.3. If k is an algebraically closed field or the separable closure in an algebraic
closure such that char(k) > 2, then Proposition 4.6.2 also holds. In addition, the first statement
can be enforced to Λ2(ρ) = φW ; see Remark 4.4.3.

Combined with Tate’s isogeny theorem, we have the following direct consequences of Propo-
sitions 4.6.1 and 4.6.2. It includes a special case of Tate’s conjecture.

Corollary 4.6.4. Suppose k is a finitely generated field over Fp with p an odd prime. Let ℓ ̸= 2
be a prime not equal to p.

(1) For any admissible isometry of Gal(ks/k)-modules

φℓ : H
2
ét(Yks ,Zℓ)

∼−→ H2
ét(Xks ,Zℓ),

we can find a Zℓ-quasi-isogeny fℓ ∈ Homk′(Xk′ , Yk′)⊗Zℓ for some finite extension k′/k,
which induces φℓ or −φℓ. In particular, φℓ is algebraic.

(2) For any admissible isometry of F -crystals over the Cohen ring W

φW : H2
crys(Y/W )

∼−→ H2
crys(X/W ),

we can find a Zp2-quasi-isogeny fp ∈ Homk′(Xk′ , Yk′)⊗ Zp2 which induces φW or −φW
for some finite extension k′/k, where Zp2 =W (Fp2). In particular, φW is algebraic.

Proof. For (1), Proposition 4.6.1 implies there is an Gal(ks/k)-equivariant isomorphism

ψℓ : H
1
ét(Yks ,Zℓ)

∼−→ H1
ét(Xks ,Zℓ),

inducing φℓ or −φℓ after a finite extension of k. Then fℓ exists by the canonical bijection (cf. [20,
VI, §3 Theorem 1])

Homk(X,Y )⊗ Zℓ
∼−→ HomGal(ks/k)

(
H1

ét(Yks ,Zℓ),H1
ét(Xks ,Zℓ)

)
.

For (2), let k̄ be an algebraic closure of k, then Proposition 4.6.2 and Remark 4.6.3 imply
that there is an isomorphism

ρ : H1
crys(Yk̄/W (k̄))

∼−→ H1
crys(Xk̄/W (k̄))

such that FXk̄
◦ ρ = ±ρ ◦ FYk̄ . In fact, the k̄ in this formula can be replaced a finite extension

k′ of k by a similar argument as the proof of (2) of Proposition 4.5.1.
Replace k by k′. If FX ◦ ρ = ρ ◦ FY then one can conclude by the canonical isomorphisms

Homk(X,Y )⊗ Zp
∼−→ Homk (X[p∞], Y [p∞])

∼−→ HomF

(
H1(Y/W ),H1(X/W )

)
, (4.6.1)

where the bijectivity of the first arrow is given by p-adic Tate’s isogeny theorem (cf. [18, Theorem
2.6]) and the second one is the faithfulness of taking Dieudonné module over W (cf. [17, Theorem
]).
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It remains to consider the case FX ◦ ρ = −ρ ◦ FY . After taking a finite extension of k, we
may assume that Zp2 ⊂W (k). Now there is ξ ∈W (k) such that ξp−1 + 1 = 0. We can see that

FX ◦ (ξρ) = ξpFX ◦ ρ = (ξρ) ◦ FY .
Again, the bijection (4.6.1) implies that ξρ is induced by a Zp-quasi-isogeny f0 ∈ Homk(X,Y )⊗
Zp. Note that ξ ∈ Z∗

p2 . We can take

fp =
f0
ξ
∈ Homk(X,Y )⊗ Zp2 .

□

Remark 4.6.5. In [67], Zarhin introduces the notion of almost isomorphism. Two abelian
varieties over k are called almost isomorphic if their Tate modules Tℓ are isomorphic as Galois
modules (replaced by p-divisible groups when ℓ = p). Proposition 4.6.1 and 4.6.2 imply that it
is possible to characterize almost isomorphic abelian surfaces by their 2nd-cohomology groups.

5. Derived isogeny in characteristic zero

In this section, we follow [23] and [31] to prove the twisted Torelli theorem for abelian surfaces
over algebraically closed fields of characteristic zero.

5.1. Over C: Hodge isogeny versus derived isogeny. Let X and Y be complex abelian
surfaces.

Definition 5.1.1. A rational Hodge isometry ψb : H2(X,Q)→ H2(Y,Q) is called reflexive if it
is induced by a reflection on Λ along a vector b ∈ Λ:

φb : ΛQ
∼−→ ΛQ x 7→ x− 2(x, b)

(b, b)
b.

Lemma 5.1.2. Any reflexive Hodge isometry ψb induces a Hodge isometry on twisted Mukai
lattices

ψ̃b : H̃(X,Z;B)→ H̃(Y,Z;B′),

where B = 2
(b,b)b ∈ H2(X,Q) (via some marking Λ ∼= H2(X,Z)) and B′ = −ψb(B).

Proof. The proof can be found in [31, §1.2]. □

In analogy to [31, Theorem 1.1], the following result characterizes the reflexive Hodge isome-
tries between abelian surfaces.

Theorem 5.1.3. Let X and Y be two complex abelian surfaces. If there is a reflexive Hodge
isometry

ψb : H
2(X,Q)

∼−→ H2(Y,Q),

for some b ∈ Λ, then there exist α ∈ Br(X) and β ∈ Br(Y ) such that ψb is induced by a derived
equivalence

Db(X,α) ≃ Db(Y, β).

Equivalently, X or X̂ is isomorphic to the coarse moduli space of twisted coherent sheaves on
Y , and ψb is induced by the twisted Fourier-Mukai transform associated to the universal twisted
sheaf.

Proof. According to Lemma 5.1.2, there is a Hodge isometry

ψ̃b : H̃(X,Z;B)
∼−→ H̃(Y,Z;B′).

Let vB′ be the image of Mukai vector (0, 0, 1) under ψ̃b. From our construction, there is a Mukai
vector

v = exp(−B′) · vB′ ∈ H̃(Y,Z)
satisfying vB′ = exp(B′) · v. We can assume that v is positive (see Proposition 3.4.1) by some
suitable autoequivalences of Db(Y ) as in [34, §2]. Let β be the Brauer class on Y with respect
to B′ and Y → Y be the corresponding Gm-gerbe. For some vB′-generic polarization H, the
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moduli stack MH(Y , vB′) of β-twisted sheaves on Y with Mukai vector vB′ forms a Gm-gerbe
on its coarse moduli space MH(Y , vB′) such that

[MH(Y , vB′)] ∈ Br(MH(Y , vB))[r]

(cf. [39, Proposition 2.3.3.4, Corollary 2.3.3.7]).
The kernel P is the tautological twisted sheaf on Y ×MH(Y , vB′) which induces a twisted

Fourier-Mukai transform

ΦP : Db(Y, β)→ Db(MH(Y , vB′)) ≃ Db(MH′(Y , vB′), α),

where α = [MH(Y , vB′)] ∈ Br(MH′(Y , vB′)) (cf. [66, Theorem 4.3]). It induces a Hodge
isometry

H̃(Y,Z;B′)
∼−→ H̃(MH(Y , vB′),Z;B′′),

where B′′ is a B-field lift of α. Its composition with ψ̃b is a Hodge isometry

H̃(X,Z;B)
∼−→ H̃(MH(Y , vB′),Z;B′′), (5.1.1)

sending the Mukai vector (0, 0, 1) to (0, 0, 1) and preserving the Mukai pairing. We can see
(1, 0, 0) is mapping to (1, b, b

2

2 ) for some b ∈ H2(Y,Z) via (5.1.1). Thus we can replace B′′ by
B′′+ b, which will not change the corresponding Brauer class, to obtain a Hodge isometry which
takes (1, 0, 0) to (1, 0, 0) and (0, 0, 1) to (0, 0, 1) at the same time. This yields a Hodge isometry

H2(X,Z) ∼−→ H2(MH′(Y , vB′),Z).

Then we can apply Shioda’s Torelli Theorem of abelian surfaces [58] to conclude that

MH′(Y , vB′) ∼= X or X̂.

When X ∼=MH′(Y , vB′), ΦP gives the derived equivalence as desired. When X̂ ∼=MH′(Y , vB′),
we can prove the assertion by using the fact X and X̂ are derived equivalent. □

Next, we are going to show that any rational Hodge isometry can be decomposed into a chain
of reflexive Hodge isometries. This is a special case of Cartan-Dieudonné theorem which says
that any element φ ∈ SO(ΛQ) can be decomposed as products of reflections:

φ = φb1 ◦ φb2 ◦ · · · ◦ φbn , (5.1.2)

such that bi ∈ Λ, and (bi)
2 ̸= 0. Then from the surjectivity of period map [58, Theorem II], for

any rational Hodge isometry
H2(X,Q)

∼−→ H2(Y,Q),

we can find a sequence of abelian surfaces {Xi} with Λ-markings and Hodge isometries ψbi : H
2(Xi−1,Q)

∼−→
H2(Xi,Q), where X0 = X and Xn = Y , such that ψbi induces φbi on ΛQ. We can arrange them
as (1.1.1):

H2(X,Q) H2(X1,Q)

H2(X1,Q) H2(X2,Q)

...
H2(Xn−1,Q) H2(Y,Q).

ψb1

ψb2

ψbn

(5.1.3)

Finally, this yields

Corollary 5.1.4. If there is a rational Hodge isometry φ : H2(X,Q)
∼−→ H2(Y,Q), then there is

a derived isogeny from X to Y , whose Hodge realization is φ.

As a consequence, we get

Corollary 5.1.5. There is a rational Hodge isometry H2(X,Q)
∼−→ H2(Y,Q) if and only if there

is a derived isogeny from Km(X) to Km(Y ).
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Proof. Witt’s cancellation theorem implies that

H2(X,Q) ≃ H2(Y,Q)⇔ T(X)Q ≃ T(Y )Q,

as Hodge isometries, where T(−) denotes the transcendental part of H2(−). According to [31,
Theorem 0.1], Km(X) is derived isogenous to Km(Y ) if and only if there is a Hodge isometry
T(Km(X))Q ≃ T(Km(Y ))Q. Then the statement is clear from the fact there is a canonical
integral Hodge isometry T(X)(2) ≃ T(Km(X)) (cf. [47, Proposition 4.3(i)]). □

Remark 5.1.6. A consequence of Corollary 5.1.4 is that any rational Hodge isometry between
abelian surfaces is algebraic, which is a special case of Hodge conjecture on product of two
abelian surface. Unlike the case of K3 surfaces, the Hodge conjecture for product of abelian
surfaces were known for a long time. See [56, Theorem 3.15] for example.

Moreover, we may call a reflexive Hodge isometry

ψb : H
2(X,Q)

∼−→ H2(Y,Q)

induced by a primitive vector b ∈ Λ prime-to-ℓ if ℓ ∤ n = (b)2

2 . The following results imply that
the Hodge realization of prime-to-ℓ derived isogeny is a composition of finitely many prime-to-ℓ
reflexive Hodge isometries.

Lemma 5.1.7. If the induced derived isogeny Db(X) ∼ Db(Y ) in Corollary 5.1.4 is prime-to-ℓ,
then each reflexive Hodge isometry ψb in (5.1.3) is prime-to-ℓ.

Proof. Otherwise, we can take ℓk to be the ℓ-factor of n. As ψb restricts to an isomorphism

H2(X,Z)⊗ Z(ℓ)
∼−→ H2(Y,Z)⊗ Z(ℓ),

we have ℓk | (x, b) for any x ∈ Λ. This means ℓk divides the divisibility of b, which is impossible
as Λ is unimodular. □

Remark 5.1.8. With notations in Theorem 5.1.3, if ψb is prime-to-ℓ with n = (b)2

2 , then the
Fourier-Mukai equivalence Db(X,α)

∼−→ Db(Y, β) in Theorem 5.1.3 satisfies

αn = exp(nB) = 1 ∈ Br(X),

which implies α ∈ Br(X)[n]. Similarly, n divides the order of β = exp(B′) ∈ Br(Y ).

5.2. Isogeny versus derived isogeny. Let us now describe derived isogenies via suitable
isogenies.

Recall that the isogeny category of abelian varieties AVQ,k consists of all abelian varieties over
a field k as objects, and the Hom-sets are

HomAVQ,k
(X,Y ) := HomAVk(X,Y )⊗Z Q,

where HomAVk(X,Y ) is the abelian group of homomorphisms from X to Y with the natural
addition. We may also write Hom0(X,Y ) for HomAVQ,k

(X,Y ) if there are no confusion on the
field of definition k. An isomorphism f from X to Y in the isogeny category AVQ,k is called a
quasi-isogeny from X to Y . For any quasi-isogeny f , we can find a minimal integer n such that

nf : X → Y

is an isogeny, i.e., a finite surjective morphism of abelian varieties. When k = C, with the
uniformization of complex abelian varieties, we have a canonical bijection

HomAVQ,C(X,Y )
∼−→ HomHdg

(
H1(Y,Q),H1(X,Q)

)
,

where the right-hand side is the set of Q-linear morphisms preserving Hodge structures. Then
the integer n for f is also the minimal integer such that (nf)∗(H1(Y,Z)) ⊆ H1(X,Z).

It is well-known that the functor Hom(X,Y ) of homomorphisms from X to Y (not just
as scheme morphisms) is representable by an étale group scheme over k (see [62, (7.14)] for
example). Therefore, via Galois descent, we have

HomAVk̄
(Xk̄, Yk̄)

∼−→ HomAVK̄
(XK̄ , YK̄), (5.2.1)

for any algebraically closed field K̄ ⊃ k. A similar statement holds for derived isogenies.
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Lemma 5.2.1. Let X and Y are abelian surfaces defined over k with char(k) = 0. Let K̄ ⊇ k
be an algebraically closed field containing k. Let k̄ be the algebraically closure of k in K̄. Then
if XK̄ and YK̄ are twisted derived equivalent, so is Xk̄ and Yk̄.

Proof. As XK̄ is twisted derived equivalent to YK̄ , by Theorem 3.4.5, there exist finitely many
abelian surfaces X0, X1, . . . , Xn defined over K̄ with X0 = XK̄ and

Xi or X̂i =MHi(Xi−1, vi) YK̄ or ŶK̄ ∼=MHn(Xn, vn)

for some [Xi−1] ∈ Br(Xi−1). Let us construct abelian surfaces over k̄ to connect Xk̄ and Yk̄ as
follows:

Set X ′
0 = Xk̄, then we take X ′

1 =MH′
1
(X ′

0 , v
′
1) where X ′

0 , H
′
1 and v′1 are the descent of X0, H1

and v via the isomorphisms Br(XK̄) ∼= Br(Xk̄), Pic(XK̄) ∼= Pic(Xk̄) and H̃(XK̄) ∼= H̃(Xk̄). Then
inductively, we can define X ′

i as the moduli space of twisted sheaves MH′
i
(X ′

i−1, v
′
i) (or its dual

respectively) over k̄. Note that we have natural isomorphisms

(MH′
i
(X ′

i−1, v
′
i))K̄

∼=MHi(Xi−1, vi)

over K̄. In particular, (MH′
i
(X ′

n, v
′
i))K̄

∼= YK̄ . It follows that MH′
i
(X ′

n, v
′
i)
∼= Yk̄. □

More generally, we can replace Q in AVQ,k by any ring R. Then any isomorphism from X to
Y in AVR,k will be called a R-(quasi)-isogeny. In particular,

Definition 5.2.2. An element f ∈ Homk(X,Y )⊗ZZ(ℓ) which has an inverse in Homk(Y,X)⊗Z
Z(ℓ) is called a prime-to-ℓ quasi-isogeny, where Z(ℓ) is the localization of Z at (ℓ).

For any abelian surface XC over C, the spreading out argument shows that there is a finitely
generated field k ⊂ C and an abelian surface X over k such that X ×k C ∼= XC. We have the
following Artin comparison

Hiét(Xk̄,Zℓ) ∼= Hi(XC,Z)⊗Z Zℓ, (5.2.2)
for any i ∈ Z and ℓ a prime. Suppose Y is another abelian surface defined over k. Suppose
f : YC → XC is a prime-to-ℓ quasi-isogeny. By definition, it induces an isomorphism of Z(ℓ)-
modules

f∗ : H1(XC,Z)⊗ Z(ℓ)
∼−→ H1(YC,Z)⊗ Z(ℓ),

such that there is a commutative diagram

Hi(XC,Z)⊗ Z(ℓ) Hi(YC,Z)⊗ Z(ℓ)

Hiét(Xk̄,Zℓ) Hiét(Yk̄,Zℓ)

∼

∼

for any i, under the comparison (5.2.2). For the converse, we have the following simple fact
given by a faithfully flat descent of modules along Z(ℓ) ↪→ Zℓ and the ℓ-adic Shioda thick.

Lemma 5.2.3. A (quasi)-isogeny f : YC → XC is prime-to-ℓ if and only it induces an isomor-
phism of integral ℓ-adic realizations

f∗ : H2
ét(Xk̄,Zℓ)

∼−→ H2
ét(Yk̄,Zℓ).

Inspired by Shioda’s trick for Hodge isogenies 4.5.1, we introduce the following notions.

Definition 5.2.4. Let X and Y be g-dimensional abelian varieties over k. We say X and Y

are (prime-to-ℓ) principally isogenous if there is a (prime-to-ℓ) isogeny f from X or X̂ to Y of
square degree, i.e., deg(f) = d2 for some d ∈ Z. In this case, we may call f a principal isogeny.

Furthermore, we say f is quasi-liftable if f can be written as the composition of finitely many
isogenies that are liftable to characteristic zero.

Now, we can state the main result in this section.

Theorem 5.2.5. Suppose char(k) = 0. The following statements are equivalent:
(1) X is (prime-to-ℓ) principally isogenous to Y over k̄.
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(2) X and Y are (prime-to-ℓ) derived isogenous over k̄.

Proof. (1) ⇒ (2): we can assume that f : X → Y is a principal isogeny defined over a finitely
generated field k′. By embedding k′ into C, two complex abelian surfaces XC and YC are derived
isogenous since there is a rational Hodge isometry

1

n
f∗ ⊗Q : H2(YC,Z)⊗Q ∼= H2(XC,Z)⊗Q

where deg(f) = n2. By Lemma 5.2.1, one can conclude Xk̄ and Yk̄ are derived isogenous, with
the rational Hodge realization 1

nf
∗ ⊗Q.

If f is a prime-to-ℓ isogeny, the map 1
nf

∗ restricts to an isomorphism

H2(YC,Z)⊗ Z(ℓ)
∼−→ H2(XC,Z)⊗ Z(ℓ).

Then one can take a prime-to-ℓ Cartan-Dieudonné decomposition (see Lemma 5.2.6 below),
which decomposes 1

nf
∗⊗Q into a sequence of prime-to-ℓ reflexive Hodge isometries. The asser-

tion follows immediately.
To deduce (2)⇒ (1), we may assume X and Y are derived isogenous over a finitely generated

field k′. Embed k′ into C, XC and YC are derived isogenous as well. According to Proposition
4.5.1, they are principally isogenous over C. It follows that X and Y are principally isogenous
over k̄ by Lemma (5.2.1).

If Db(X) ∼ Db(Y ) is prime-to-ℓ, then each reflexive Hodge isometry ψb in (5.1.3) is prime-to-ℓ
by Lemma 5.1.7. The principal isogeny which induces ψb is prime-to-ℓ by Lemma 5.2.3. This
proves the assertion.

□

Lemma 5.2.6 (prime-to-ℓ Cartan-Dieudonné decomposition). Let Λ be an integral lattice over
Z whose reduction mod ℓ is still non-degenerated. Any orthogonal matrix A ∈ O(Λ)(Z(ℓ)) ⊂
O(Λ)(Q), with (ℓ > 2), can be decomposed into a sequence of prime-to-ℓ reflections.

Proof. To prove the assertion, we will follow the proof of [57] to refine Cartan-Dieudonné de-
composition for any field. In general, if Λk is quadratic space over a field k with the Gram
matrix G. Let I be the identity matrix and let Rb be the reflection with respect to b ∈ Λk. The
proof of Cartan-Dieudonné decomposition in [57] relies on the following facts: for any element
A ∈ O(Λk), we have

i) A is a reflection if rank(A− I) = 1 (cf. [57, Lemma 2])
ii) if S = G(A− I) is not skew symmetric, there exists a ∈ Λ satisfying atSa ̸= 0 and

S + St ̸= 1

atSa
(Sb · btS + Stb · btSt),

then rank(ARb − I) = rank(A − I) − 1 and G(ARb − I) is not skew symmetric with
b = (A− I)a satisfying b2 = −2atSa. Such a always exists. (cf. [57, Lemma 4, Lemma
5]).

iii) if S = G(A− I) is skew symmetric, then there exists b ∈ Λ such that G(ARb − I) is not
skew symmetric (cf. [57, Theorem 2]).

Then one can decompose A as a series of reflections by repeatedly using ii). In our case, it
suffices to show that if A is coprime to ℓ, i.e. nA is integral for some n coprime to ℓ, then

i’) A is a corpime to ℓ reflection if rank(A− I) = 1;
ii’) if S = G(A− I) is not skew symmetric and there exists a ∈ Λ satisfying p ∤ atSa and

S + St ̸= 1

atSa
(Sb · btS + Stb · btSt),

then ARb is coprime to ℓ and G(ARb − I) is not skew symmetric with b constructed
above;

iii’) if S = G(A− I) is skew symmetric, then there exists b ∈ Λ such that ARb is coprime to
ℓ and G(ARb − I) is not skew symmetric.
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This means that we only need to find some prime-to-ℓ reflections satisfying the conditions as
above. By our assumption, the modulo ℓ reduction ΛFℓ

of Λ remains non-degenerate. If A is
coprime to ℓ, then we can consider the reduction A mod ℓ and apply i)-iii) to A mod ℓ ∈ O(ΛFℓ

)
to obtain reflections over Fℓ. We can lift the reflections to O(ΛQ), which are obviously coprime
to ℓ. One can easily check such reflections satisfy ii’) and iii’). □

5.3. Proof of Theorem 1.2.1 and Corollary 1.2.2. Let us summarize all the results which
conclude Theorem 1.2.1. By a similar argument in Theorem 5.2.5, we can reduce them to the
case k = C.

Proof of (i)⇔ (ii). This is Theorem 5.2.5.

Proof of (i) ⇔ (vi) ⇔ (vii) ⇔ (viii). The equivalence (i) ⇔ (vi) is Corollary 5.1.4. The
equivalence (vi) ⇔ (vii) is from Witt cancellation theorem. For (vi) ⇔ (viii), note that a
rational Hodge isometry φ : H2(X,Q)

∼−→ H2(Y,Q) induces a rational isometry NS(X)Q
∼−→

NS(Y )Q. Then we have a Hodge isometry T(X)Q
∼−→ T(Y )Q by Witt cancellation theorem. The

converse is clear.

Proof of (i)⇔ (iii). This is Corollary 5.1.5.

Proof of (ii) ⇒ (iv) ⇒ (v). This is from the computation in [23, Proposition 4.6]. Indeed, one
may take the correspondence

Γ :=
⊕
i

Γ2i : h
even(X)

∼−→ heven(Y ),

where
Γ2i :=

1

ni
f∗ ◦ π2iX : h2i(X)→ h2i(Y ),

and f : X → Y is the given principal isogeny.

Proof of (v) ⇒ (ii). Let Γ: heven(X)
∼−→ heven(Y ) be the isomorphism of Frobenius algebra

objects. The Betti realization of its second component is a Hodge isometry by the Frobenius
condition (cf. [23, Theorem 3.3]). Thus X and Y are derived isogenous by Corollary 5.1.4, and
hence principally isogenous.

6. Derived isogeny in positive characteristic

In this section, we will prove the twisted derived Torelli theorem for abelian surfaces over odd
characteristic fields. The principal strategy is to lift everything to characteristic zero.

6.1. Prime-to-p derived isogeny in mixed characteristic. Let us start with an important
lemma for prime-to-p derived isogenies, which is the only place we require the characteristic
p > 3.

Lemma 6.1.1. Let K be a complete discretely valued field in characteristic zero, whose residue
field is perfect with characteristic p > 3. Denote by OK the ring of integers. Let X → X and
Y→ Y be twisted abelian surfaces over OK whose special fibers are X0 → X0 and Y → Y0, and
generic fibers are XK → XK and YK → YK . Suppose f0 : Db(X0)

∼−→ Db(Y0) is a prime-to-p
derived equivalence and f : Db(X)

∼−→ Db(Y) is a lifting of f0, then fK : Db(XK)
∼−→ Db(YK) is

also prime-to-p.

Proof. It suffices to prove that the p-adic realization of fK is integral. This can be deduced from
an argument from Cais–Liu’s crystalline cohomological description for integral p-adic Hodge
theory (cf. [13]).

Let us sketch the proof. As f0 is prime-to-p, its cohomological realization restricts to an
isometry of F -crystals

φp : H
2
crys(X0/W ) ≃ H2

crys(Y0/W )
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by our definition. The base-extension φp⊗K can be identified with the cohomological realization
of fK on the de Rham cohomology

φK : H2
dR(XK/K) ≃ H2

dR(YK/K)

by Berthelot–Ogus comparison (cf. [24, Theorem B.3.1]). It also preserves the Hodge filtration.
Let S be the divided power envelope of pair (W JuK, ker(W JuK→ OK)). Then the map

φp ⊗W S : H2
crys(X0/S)

∼−→ H2
crys(Y0/S)

is an isomorphism of strongly divisible S-lattices (cf. [13, §4]). If p > 3, then according to [13,
Theorem 5.4], one can apply Breuil’s functor Tst on it to see that φK restricts to an Zp-integral
Gal(K̄/K)-equivariant isometry

H2
ét(XK̄ ,Zp)

∼−→ H2
ét(YK̄ ,Zp).

□

Remark 6.1.2. The technical requirement for p > 3 is needed in [13, Theorem 4.3 (3),(4)].
When OK = W (k) is unramified, this condition can be released to p > 2 by using Fontaine’s
result [21, Theorem 2 (iii)]. In general, when p = 3, a possible approach is to prove the Shioda’s
trick as in §4 for strongly divisible S-lattices (cf. [10, Definition 2.1.1]), which can reduce the
statement to crystalline Galois representations of Hodge–Tate weight one.

6.2. Serre–Tate theory and lifting of prime-to-p quasi-isogeny. The Serre–Tate theorem
says that the deformation theory of an abelian scheme in characteristic p is equivalent to the
deformation theory of its p-divisible group (cf. [44, Chapter V.§2, Theorem 2.3]). Let S0 ↪→ S
be an infinitesimal thickening of schemes such that p is locally nilpotent on S. Let D(S0, S)
be the category of pairs (X0,G), where X0 is an abelian scheme over S0 and G is a lifting of
p-divisible group X0[p

∞] to S. There is an equivalence of categories

{abelian schemes over S} ∼−→ D(S0, S)
X 7→ (X ×S S0,X [p∞]).

Now we set S0 = Spec(k) and S = Spec(V/(πn+1)) for a perfect field k, V is a totally
ramified finite extension of W (k) and an integer n ≥ 1. Since there is an equivalence between
the category of p-divisible groups over V and the category of inductive systems of p-divisible
groups over V/(πn), we have an identification

D(k, V ) = lim←−
n

D(k, V/(πn)).

As a consequence, we get

Lemma 6.2.1. There is an equivalence of categories

{formal abelian schemes over V } ∼−→ D(k, V )

A 7→ (A×V k,A[p∞]) .

One can lift separable isogenies between abelian surfaces, which is well-known to experts.

Proposition 6.2.2. Suppose p > 2. Let f : X → Y be a separable isogeny. There are liftings
X → Spec(V ) and Y → Spec(V ) of X and Y respectively, such that the isogeny f can be lifted
to an isogeny fV : X → Y. In particular, every prime-to-p isogeny is liftable.

Proof. Suppose we are given a lifting

f̃ [p∞] : GX → GY
of the isogeny of p-divisible groups f [p∞] : X[p∞] → Y [p∞]. Then we can apply Lemma 6.2.1
to get a formal lifting of f to Spec(V ):

f̃ : X → Y,
such that f̃ is finite and Y admits an algebraization. It suffices to show f̃ also admits an
algebraization, which can be done by [26, Proposition (5.4.4)].
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The required lifting of p-divisible groups can be constructed as follows. Since f [p∞] is sep-
arable, its kernel is a finite étale group scheme, which is freely liftable. Therefore, we may
assume that f [p∞] is an isomorphism. Let us fix a lifting of X to V . The p-divisible group
GX := X [p∞] over V forms a lifting of X[p∞] to V , and such lifting gives a filtered Dieudonné
module structure on D(Y [p∞]) under the isomorphism f [p∞]. Then the statement follows from
the Grothendieck–Messing theory (see the proof of [36, Proposition A.6] for example). □

6.3. Specialization of derived isogenies. Next, we shall show that prime-to-p geometric
derived isogenies are preserved under reduction. The basic idea is to show that two smooth
projective family of abelian or K3 surfaces over a complete discrete valuation ring whose geo-
metric generic fibers are Fourier–Mukai partners will have special fibers which are moduli space
of stable twisted sheaves on each other. For this, we only need to specialize the datum that form
a moduli space.

Theorem 6.3.1. Let V be a discrete valuation ring with residue field k and let η be its generic
point. Assume that char(k) = p > 2. Let X → Spec(V ) and Y → Spec(V ) be two projective
families of abelian surfaces or K3 surfaces over Spec(V ). If there is a derived equivalence

ΨP : Db(Xη̄, α)
∼−→ Db(Yη̄, β)

between geometric generic fibers such that ord(α) and ord(β) are prime-to-p, then their special
fibers are twisted derived equivalent.

Proof. We denote by X0 and Y0 the geometric special fibers of X/V and Y/V respectively. From
Theorem 3.4.5, it is known that there is an isomorphism

Yη̄ ∼=Mα
Hη

(Xη̄, vη̄),

for some twisted Mukai vector vη̄ ∈ Ñ(Xη̄, α), after replacing (X , α) by (X̂ , α̂) if it is necessary.
Up to taking a finite extension of V , we may assume that the Brauer class α can be defined over
η.

We claim that one can extend α to a class in the Brauer group of the total space Br(X ) if
p ∤ ord(α). For simplicity, we assume ord(α) = ℓn for some prime ℓ. In this case, the Gysin
sequence and Gabber’s absolute purity gives an exact sequence

0→ Br(X ){ℓ} → Br(Xη){ℓ} → lim−→
n

H1
ét(X0,Z/ℓn). (6.3.1)

(cf. [15, Theorem 3.7.1 (ii)]). If X is a K3 surface, then we have H1
ét(X0,Z/ℓn) = 0 for all n

as it is simply-connected, and thus one can find a lift α̃ ∈ Br(X ) of α by (6.3.1). When X is
an abelian surface over Spec(V ), the Gysin sequence can not directly give the existence of a
extension of α. Again, one can use the trick of Kummer surfaces. Consider the relative Kummer
surface Km(X )→ Spec(V ), we have a commutative diagram

Br(Km(X )){ℓ} Br(Km(Xη)){ℓ}

Br(X ){ℓ} Br(Xη){ℓ}

∼

Θ Θη

from Proposition 2.1.1. After passing to a finite extension, we can assume α lies in the image
of Θη. As the top arrow is surjective and Θη is an isomorphism, we may find an extension
α̃ ∈ Br(X ){ℓ} whose restriction on Xη is α.

As the family X → Spec(V ) is smooth and proper, the relative Picard scheme PicX/V is
proper. Now, under the specialization of the Picard group

Pic(Xη)
∼←− Pic(X )→ Pic(X0),

we can pick extensions v ∈ Ñ(X ) and H ∈ Pic(X ) of vη and Hη, so that v|Xη = vη and
H|Xη = Hη. In general, the line bundle H0 = Hk on the special fiber is not ample. However,
we may replace H by H⊗M⊗n for a relative ample line bundle on X/V and n≫ 0, such that
H0 and Hη are both ample and v-generic (i.e., not lie in a wall of the Mukai vector v), since the



30 ZHIYUAN LI AND HAITAO ZOU

v-walls in the ample cones of Xη̄ and X0 are known to be (locally) finitely many hyperplanes
(cf. [66, Proposition 3.10] for char(k) = 0 or [7, Proposition 4.1.14] for char(k) = p). Then we
let M α̃

H(X , v) be the corresponding relative moduli space of H-stable twisted sheaves, which is
smooth over V . The generic fiber of M α̃

H(X , v)→ Spec(V ) is isomorphic to Yη after a finite base
extension since it is geometrically birational to Yη̄ by the wall-crossing (see [46] for example).

Set α0 = α̃|X0 ∈ Br(X0). Note that its special fiber is also isomorphic to Mα0
H0

(X0, v0) after
some finite field extension, we have the following commutative diagram after taking a finite ring
extension of V :

M α̃
H(X , v) Mα

Hη
(Xη, vη) Yη Y

Spec(V ) Spec(k(η)) Spec(k(η)) Spec(V )

∼=

According to Matsusaka–Mumford [43, Theorem 1], the isomorphism can be extended to the
special fiber. Thus Y0 is isomorphic to Mα0

H0
(X0, v0). It follows that Db(X0, α0) ≃ Db(Y0, β0).

□

Using Remark 5.1.8, one can easily deduce that every prime-to-p derived isogeny can be
specialized.

Remark 6.3.2. In Theorem 6.3.1, the original derived equivalence ΨP is shown to be extended
to the whole family. We only replaced it by a Fourier–Mukai transform given by the universal
family of twisted sheaves which is naturally be specialized.

Remark 6.3.3. Our proof fails when k is imperfect and the twisted derived equivalence is not
prime-to-p. This is because if the associated Brauer class α has order pn, the map

Br(X )[pn]→ Br(Xη)[pn]

may not be surjective (cf. [55, 6.8.2]).

6.4. Proof of Theorem 1.4.1. When X or Y is supersingular, the assertion will be will be
proved in Proposition 6.6.8. So we can assume that X and Y both have finite height.

Proof of (i′) ⇒ (ii′). We can assume the prime-to-p derived isogeny is defined over a finitely
generated subfield of k̄. By the definition of prime-to-p derived isogeny, we have an isomorphism
of F -crystals

H2
crys(X/W )

∼−→ H2
crys(Y/W ).

With p-adic Shioda’s trick in Corollary 4.6.4, we can conclude that X and Y are prime-to-p
isogenous. It remains to see they are principally isogenous. The easiest way for proving this is
by lifting to characteristic 0.

As the composition of prime-to-p isogenies remains prime-to-p, it suffices to consider a single
derived equivalence

Db(X ) = Db(X,α) ≃ Db(Y, β) = Db(Y )

for some gerbes X → X and Y → Y satisfying that the orders of α = [X ] and β = [Y ] are
both prime-to-p. As shown in Theorem 3.4.5, we may assume that Y is the moduli stack of
X -twisted coherent sheaves on X. Therefore, we can liftings X and Y respectively, to some
finite extension W ′ of W whose generic fibers are derived equivalent: There exists Gm-gerbes
X/W ′ and Y/W ′ as liftings of X and Y such that Y is the relative moduli stack of X-twisted
coherent sheaves over W ′, and thus the universal sheaf induces a twisted derived equivalence
between their generic fibers, which is prime-to-p by Lemma 6.1.1.

By Theorem 1.2.1, the generic fibers of the X and Y are prime-to-p principally isogenous
over a finite extension K of k(η). Suppose fK : XK → YK is a principal isogeny. The Néron
extension property of smooth models X ,Y ensures that the fK extends to an isogeny f : X → Y,
and there is an isogeny g : Y → X such that g ◦ f = deg(fK). Thus the restriction fk over the
special fibers is still a principal isogeny. Then we can conclude the special fibers are prime-to-p
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principally isogenous by using Tate’s spreading theorem for p-divisible groups (cf. [61, Theorem
4]).

Proof of (ii′) ⇒ (i′). Suppose that we are given an isogeny ϕ : Y → X, which is prime-to-p of
degree d2. By Proposition 6.2.2, we can lift it to a prime-to-p isogeny of degree d2 over some
finite flat extension V of W :

Φ: Y → X .
The isogeny ΦK between the generic fibers induces a GK-equivariant isometry

Φ∗
K

d
: H2

ét(XK̄ ,Zp)
∼−→ H2

ét(YK̄ ,Zp).

By Theorem 5.2.5, there exists a geometric prime-to-p derived isogeny Db(XK) ∼ Db(YK) whose
p-adic cohomological realization is Φ∗

K
d . The assertion then follows from Theorem 6.3.1.

6.5. Further remarks. From the proof of Theorem 1.4.1 (i′) ⇒ (ii′), we can see that the
lifting-specialization argument also works for non prime-to-p derived isogenies. Thus we have

Theorem 6.5.1. Suppose X and Y are abelian surfaces over k̄ with finite height and char(k) ̸=
2. If X and Y are derived isogenous, then they are quasi-liftable principal isogenous.

Moreover, we believe that the converse of Theorem 6.5.1 also holds.

Conjecture 6.5.2. With the same assumptions in Proposition 6.5.1. Then X and Y are derived
isogenous if and only if they are quasi-liftable isogenous.

Our approach remains valid once there is a specialization theorem for non prime-to-p derived
isogenies. According to the proof of Theorem 6.3.1, it suffices to know the existence of special-
ization of Brauer classes of order p. Following the notations in Theorem 6.3.1, this means that
the restriction map Br(X )→ Br(Xη) is surjective. See Remark 6.3.3.

Now we discuss the connections between the derived isogenies of abelian surfaces and their
associated Kummer surfaces. Using the lifting argument, the following theorem is an immediate
consequence of the known result in characteristic 0.

Theorem 6.5.3. With the assumption as in Theorem 6.5.1. If X and Y are prime-to-p derived
isogenous, then the associated Kummer surfaces Km(X) and Km(Y ) are prime-to-p derived
isogenous. Moreover, if two twisted surfaces (Km(X), α) and (Km(Y ), β) are derived equivalent
with p ∤ ord(α) and p ∤ ord(β), then X and Y are prime-to-p derived isogenous.

Proof. For the first assertion, as before, we can quasi-lift the prime-to-p derived isogeny between
X and Y to characteristic 0. By Theorem 1.4.1 and Lemma 6.1.1, their liftings are geometri-
cally prime-to-p derived isogenous. According to [60, Corollary 4.3], we get that the associated
Kummer surfaces are prime-to-p derived isogenous. It follows from Theorem 6.3.1 that Km(X)
and Km(Y ) are prime-to-p derived isogenous.

For the last assertion, according to [9, Theorem 5.8], we can find liftings

(S1, α̃)→ Spec W ′, (S2, β̃)→ Spec W ′

of (Km(X), α) and (Km(Y ), β) over discrete valuation ring W ′ with residue field k and fraction
field K ′ such that

(1) the generic fibers (S1,K′ , α̃|K′) and (S2,K′ , β̃|K′) are geometrically derived equivalent.
(2) NS(S1,K′) ∼= NS(Km(X)) and NS(S2,K′) ∼= NS(Km(Y )) via the specialization map,

As seen in the proof of Lemma 2.2.4, with condition (2), we know that S1 is isomorphic to
Km(X ) and S2 is isomorphic to Km(Y) for some liftings of X and Y respectively. By Theorem
1.2.1, the generic fibers of X and Y are geometrically prime-to-p derived isogeny. Again, the
assertion follows from Theorem 6.3.1. □
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Remark 6.5.4. It is natural to ask if one can apply the lifting method to prove the converse
of Theorem 6.5.3, i.e. if Km(X) and Km(Y ) are prime-to-p derived isogenous, so is X and Y .
The issue is that the derived isogeny between Km(X) and Km(Y ) is only quasi-liftable, not
liftable. In other words, although we can lift every derived equivalence between twisted abelian
surfaces or K3 surface to characteristic 0, we can not necessarily find some liftings of X and
Y respectively such that the generic fibers of their associated Kummer surfaces are prime-to-p
geometrically derived isogenous.

6.6. Supersingular twisted abelian surfacces. At last, we come to the case X is supersin-
gular over an algebraically closed field k such that char(k) = p > 2, i.e., X is isogenous to E×E,
where E is a supersingular elliptic curve over k.

6.6.1. supersingular twisted derived Torelli theorem. We have the following observation via Ogus’s
supersingular Torelli theorem [50, Theorem 6.2].

Theorem 6.6.1. Let X an Y be two supersingular abelian surfaces over k. For Gm-gerbes
X → X and Y → Y , the following statements are equivalent:

(1) There is a Fourier-Mukai transform Db(X ) ≃ Db(Y ).
(2) There is an isomorphism between K3 crystals H̃(X ,W ) ∼= H̃(Y ,W ).

Proof. The proof is similar to the case of K3 surfaces which is given in [6, Theorem 3.5.5]. We
sketch it here.

For (1) ⇒ (2), we only need to show the twisted crystalline Chern character of a Fourier–
Mukai kernel P lies H̃(X −1 × Y ,W ). When p > 3 as 2 and 3 are the only primes dividing
the denominators in the formula of twisted Chern character of P, this is due to a direct Chern
character computation (cf. [6, Proposition A.3.3]). When p = 3, one can follow [7, Proposition
4.2.4] using the twistor lines and lifting argument. As the proof is similar, we omit the details
here.

To prove that (2) implies (1), let us take v = ρ(0, 0, 1), there is a filtered isomorphism

γ : H̃(X ,W )
ρ−→ H̃(Y ,W )

ϕE−→ H̃(MH(Y , v),W ) (6.6.1)

where ϕE is the cohomological Fourier-Mukai transform induced by the universal twisted sheaf
E on Y ×MH(Y , v). Then there is an isomorphism

f : X
∼−→MH(Y , v)

since γ induces an isomorphism between supersingular K3 crystals (cf. (3.3.1))

H2
crys(X/W )

∼−→ H2
crys(Y/W ).

The equality [X ] = f∗[MH(Y , v)] is from the construction. □

6.6.2. twistor space of supersingular abelian surfaces. In [7], Bragg and Lieblich have developed
the theory of twistor space for supersingular K3 surfaces. In terms of it, they are able to con-
structed the twisted period space of supersingular K3 surfaces. One can recap their construction
and extend it to abelian surfaces as below. Firstly, we need the representabiliy of flat cohomology
of abelian surfaces, which plays an important role in the construction of supersingular twistor
space.

Let f : X → S be a flat and proper morphism of schemes of finite type over k. Consider the
sheaf of abelian groups Rif∗µp on the big fppf site (Sch/S)fl, which can be expressed as the
fppf-sheafification of

S′ 7→ Hifl(XS′ , µp)

for any S-scheme S′. In general, the representability of Rif∗µp is not easy to see by the “wildness”
of flat cohomology with p-torsion coefficients. In this part, we will prove the representability for
supersingular abelian surfaces.
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Suppose S is perfect. Consider the auxiliary big fppf site (Perf/S)fl for the full subcategory
Perf/S ⊂ Sch/S whose objects are perfect schemes over S. There is a functor between category
of flat sheaves

(−)perf : Sh ((Sch /S)fl)→ Sh ((Perf /S)fl) . (6.6.2)
induced by the natural inclusion (Perf /S)fl ↪→ (Sch /S)fl, called perfection.

Proposition 6.6.2. Let f : X → S be an abelian S-scheme of relative dimension 2, whose
geometric fibers are all supersingular. Then

(1) R1f∗µp ∼= X̂[p] is a finite flat S-group scheme whose geometric fibers are of local-local
type (i.e. being self-dual under Cartier duality).

(2) For any π : Spec(A)→ S with A being perfect, we have Hifl(A, π
∗R1f∗µp) = 0 for i ≥ 1.

In particular, if S is perfect, then (R1f∗µp)
perf = 0.

Proof. For (1), it suffices to check them affine locally on the base. Assume S is an affine scheme
of finite type over k. By taking the Stein factorization, we can further assume f∗OX ∼= OS .
Then f∗µp ∼= µp also holds universally. Under this assumption, we have an exact sequence of
fppf-sheaves by Kummer theory:

0→ R1f∗µp → R1f∗Gm → R1f∗Gm. (6.6.3)

Since R1f∗Gm computes the relative Picard scheme PicX/S and the Néron-Severi group of X is
torsion-free, we can see

R1f∗µp ∼= ker
(
PicX/S

·p−→ PicX/S

)
∼= ker

(
Pic0X/S

·p−→ Pic0X/S

)
.

On the other hand, it is well-known that Pic0X/S is represented by the dual abelian S-scheme X̂
(cf. [49, Corollay 6.8]). Thus R1f∗µp is representable by the commutative finite group S-scheme
X̂[p]. Recall that Ogus’s supersingular Torelli theorem implies that any supersingular abelian
variety over an algebracally closed field is principally polarized, i.e., there is an isomorphism
Xt
∼= X̂t at all geometric fiber Xt (cf. [50, Corollary 6.15]). Thus the geometric fibers of R1f∗µp

is of local-local type.
For (2), take the following smooth group resolution of αp,

0→ αp → Ga
F−→ Ga → 0,

we can see that Hifl(A,αp) = 0 for i ≥ 2 for any ring A. For any finite flat group scheme G of
local-local type, we can fill it in an exact sequence

0→ G′ → G→ G′′ → 0

such G′ and G′′ are of smaller p-ranks i.e., the rank of Z/pZ-module G′[p](k̄) and G′′[p](k̄) are
less than G[p](k̄). Thus by induction, we can prove that Hifl(A,G) = 0 for i ≥ 2 and any finite
flat group scheme G of local-local type.

For i = 1 and A being perfect, we can see

H1
fl(A,αp) = A/Ap = 0.

Thus H1
fl(A,R

1f∗µp) = 0 by the same induction as before. □

Proposition 6.6.3. Let f : X → S be a smooth and proper family of supersingular abelian
surfaces over an algebraic space S. Then R2f∗µp is representable by an algebraic space, which
is separated and locally of finite presentation over S.

Proof. This is a consequence of [8, Corollary 5.8, Example 5.9] as R1f∗µp is representable by
Proposition 6.6.2. □

Remark 6.6.4. The case that X → S = Spec(k) being a smooth surface for some field k is
claimed by Artin in [2, Theorem 3.1] without proof. Bragg and Olsson also provide it a proof
(Corollary 1.4 in loc. cit.)
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For relative K3 surfaces, there is a moduli-theoretic proof given by Bragg and Lieblich using
the stack of Azumaya algebras (cf. [7, Theorem 2.1.6]). Their proof can not be directly used for
relative abelian surfaces as the essential assumption R1f∗µp = 0 fails in fppf site (Sch/S)fl.

Remark 6.6.5. An alternative proof for Proposition 6.6.3 is to apply Artin’s representability
criterion [1, Theorem 5.3]. The most hard part is to see the separatedness, which can be proved
by (1) showing (R2 f∗µp)

perf is representable by a separated algebraic space, and (2) running
fpqc descent for the diagonal of R2 f∗µp.

The following observation is essential in the construction of twistor space of supersingular
abelian or K3 surfaces.

Corollary 6.6.6 ([7, Proposition 2.2.4]). Keep the assumptions same as in Proposition 6.6.3.
The connected components of any geometric fiber of R2f∗µp → S is isomorphic to the additive
group scheme Ga.

Proof. Note that the completion of each geometric fiber of R2f∗µp at s ∈ S, along the identity
section, is isomorphic to the formal Brauer group B̂rXs/k(s), which is isomorphic to Ĝa. The
only smooth group scheme at k(s) with this property is Ga. □

Now, let us recap the constructions of supersingular twisted period space and period morphism
given in [7] and extend them to supersingular abelian surfaces. Fix a supersingular K3 lattice
Λ, which is a free Z-lattice whose discriminant disc(Λ ⊗ Q) = −1, signature (1, n) (n = 5 or
21)and the Λ∨/Λ is p-torsion. Then |Λ∨/Λ| = p2σ0(Λ) for 1 ≤ σ0(Λ) ≤ (n−1)

2 . The lattice Λ is
also determined by σ0(Λ), called the Artin invariant of Λ. Set

Λ̃ = Λ⊕ U(p) and Λ̃0 = pΛ̃∨/pΛ̃.

where U(p) is the twisted hyperbolic plane generated by vectors e and f such that e2 = f2 = 0
and e · f = −p.

Let MΛ0 be the moduli space of characteristic subspaces of Λ0 := pΛ∨/pΛ ∼= e⊥/e as in [51,
§4] and let M ⟨e⟩

Λ̃0
be the moduli space of characteristic subspaces of Λ̃K3,0 which don’t contain e

(cf. [7, Definition 3.1.7]). They are both defined over Fp.
For any K̃ ∈ M ⟨e⟩

Λ̃0
(S) over a Fp-scheme S, one can produce a characteristic subpsace K of

Λ0 ⊗OS as the image of K̃ ∩ (e⊥ ⊗OS) in Λ0 ⊗OS ∼= e⊥/e⊗OS (cf. [7, Lemma 3.19]). Then
the assignment K̃ 7→ K gives a morphism

πe : M
⟨e⟩
Λ̃0
→MΛ0 .

The Lemma 3.1.15 in [7] shows that the fiber of πe at a k-point [K] ∈ MΛ0(k) is isomorphic to
a group scheme with connected components A1.

Definition 6.6.7. The twistor line in M
Λ̃0

:=M
Λ̃0
×Fp k is an affine line A1 ⊂M

Λ̃0
which is a

connected component of a fiber of πe over a k-point [K] ∈MΛ0(k) for some isotropic e ∈ Λ̃0.

To emphasis that we are at either the case n = 21 or n = 5, we may write Λ = ΛK3 and
Λ = ΛAb respectively. For K3 surfaces, it has been shown that the moduli functor SΛK3

of ΛK3-
marked supersingular K3 is representable by a locally of finite presentation, locally separated
and smooth algebraic space of dimension σ0(ΛK3)− 1. There is a universal family

u : X → SΛK3

(as algebraic spaces), which is smooth with relative dimension 2. The higher direct image R2ufl∗µp
is representable by an algebraic group space over SΛK3

after perfection, denoted by

π : SΛK3
→ SΛK3

(see loc.cit. Theorem 2.1.6). The connected component of the identity S o
ΛK3
⊂ SΛK3

parame-
terizes the µp-gerbes which are not essentially-trivial except the identity, at each Λ-marked K3
surface in SΛK3

(k). Then there are (twisted) period morphisms
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ρ : SΛK3
→MΛK3,0

and ρ̃ : S o
ΛK3
→M

⟨e⟩
Λ̃0

,

(cf. [51, §3] and [7, Definition 3.5.7]). Then the method in loc.cit. shows that there is a Cartesian
diagram

S o
ΛK3

SΛK3

M
⟨e⟩
Λ̃K3,0

MΛK3,0
,

π

ρ̃ ρ (6.6.4)

and ρ is étale surjective. The twisted period map ρ̃ factors as

S o
Λ̃K3

PΛK3
M

⟨e⟩
Λ̃K3,0

,
ρ̃′

ρ̃

where P
Λ̃K3

is the moduli space of ample cones of characteristic subspaces defined by Ogus
([51]). It has been shown that ρ̃′ is an isomorphism (cf. [7, Theorem 5.1.7]). In particular, this
implies that the moduli space of supersingular K3 surfaces of Artin invariant ≤ 2 is rationally
fibered over the moduli space of supersingular K3 surfaces of Artin invariant 1, whose fiber is a
twistor line, corresponding to the relative moduli spaces of twisted sheaves on universal gerbes
associated to the Brauer groups of the superspecial K3 surface.

For supersingular abelian surfaces, everything works by replacing ΛK3 with ΛAb. Indeed, the
proof in [7, Proposition 5.1.5] already shows that the twisted period map ρ̃′ for abelian surfaces
will be an isomorphism. Another simple way to see this is via the Kummer construction. One
just notice that the moduli space of supersingular abelian surfaces is isomorphic to the moduli
space of supersingular Kummer surfaces and they have isomorphic period spaces, i.e.,

M
⟨e⟩
Λ̃K3,0

∼=M
⟨e⟩
Λ̃Ab,0

when σ0(ΛK3) = σ0(ΛAb) ≤ 2. This gives

Proposition 6.6.8. For non-superspecial supersingular abelian surface X ′, there exists a Brauer
class [X ] ∈ Br(X) such that Db(X ) ≃ Db(X ′). In particular, X ′ is a moduli space of twisted
sheaves on X.
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53. I. I. Pjateckĭı-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk
SSSR Ser. Mat. 35 (1971), 530–572. MR 0284440

54. A. Polishchuk, Symplectic biextensions and a generalization of the Fourier-Mukai transform, Math. Res. Lett.
3 (1996), no. 6, 813–828. MR 1426538

55. Bjorn Poonen, Rational points on varieties, Graduate Studies in Mathematics, vol. 186, American Mathe-
matical Society, Providence, RI, 2017. MR 3729254

56. José J. Ramón Marí, On the Hodge conjecture for products of certain surfaces, Collect. Math. 59 (2008),
no. 1, 1–26. MR 2384535

57. Peter Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 1 (1950),
481–491. MR 36762

58. Tetsuji Shioda, The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), no. 1,
47–59. MR 480530

59. Alexei N. Skorobogatov and Yuri G. Zarhin, The Brauer group of Kummer surfaces and torsion of elliptic
curves, J. Reine Angew. Math. 666 (2012), 115–140. MR 2920883

60. Paolo Stellari, Derived categories and Kummer varieties, Math. Z. 256 (2007), no. 2, 425–441. MR 2289881
61. J. T. Tate, p-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 158–

183. MR 0231827
62. Gerard van der Geer and Ben Moonen, Abelian varieties, http://van-der-geer.nl/~gerard/AV.pdf.
63. Kęstutis Česnavičius, Purity for the Brauer group, Duke Math. J. 168 (2019), no. 8, 1461–1486. MR 3959863
64. Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics,

vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
65. Ziquan Yang, Isogenies between K3 surfaces over F̄p, International Mathematics Research Notices (2020).
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