Introduction to Hodge Conjecture

Zhiyuan Li

Learning Seminar: Spring 2020

March 30, 2020

Introduction

- What is Hodge conjecture?

A rough answer: concerns the realization of certain cohomology classes of projective varieties by combinations of cycles arising from subvarieties.

- What is Hodge conjecture?

A rough answer: concerns the realization of certain cohomology classes of projective varieties by combinations of cycles arising from subvarieties.

- Content in this talk:
\star Hodge Theory
* Hodge conjecture and its original conjecture
* Examples and Counter examples
\star Hodge conjecture for abelian varieties
- What is Hodge conjecture?

A rough answer: concerns the realization of certain cohomology classes of projective varieties by combinations of cycles arising from subvarieties.

- Content in this talk:
\star Hodge Theory
* Hodge conjecture and its original conjecture
* Examples and Counter examples
\star Hodge conjecture for abelian varieties
- Goal of this seminar:
^ Infinitesimal and generalized Hodge Conjecture
\star Hodge conjecture for CM abelian varieties
* Markman's paper
* Tate conjecture

Cohomology Theories

- Let X be a smooth projective variety over \mathbb{C}.
$X_{C l}$: classical topology; $X_{z a r}$: Zariski topology; $X^{\text {an }}$: analytic structure.

Cohomology Theories

- Let X be a smooth projective variety over \mathbb{C}.
$X_{c l}$: classical topology; $X_{z a r}$: Zariski topology; $X^{\text {an }}$: analytic structure.
- Betti cohomology: $\mathrm{H}^{i}(X, \mathbb{Z})_{B}=\mathrm{H}^{i}\left(X_{c l}, \mathbb{Z}\right)$ gives an integral structure.

Cohomology Theories

- Let X be a smooth projective variety over \mathbb{C}.
$X_{C l}$: classical topology; $X_{z a r}$: Zariski topology; $X^{\text {an }}$: analytic structure.
- Betti cohomology: $\mathrm{H}^{i}(X, \mathbb{Z})_{B}=\mathrm{H}^{i}\left(X_{c l}, \mathbb{Z}\right)$ gives an integral structure.
- de Rham cohomology:

$$
\mathrm{H}_{d R}^{i}\left(X_{C l}, \mathbb{R}\right)=\frac{\text { closed } i \text { differential forms }}{\text { exact } i \text { differential forms }}
$$

has another structure depending on the field of definition.
de-Rham Theorem: $\mathrm{H}^{i}(X, \mathbb{Z})_{B} \otimes \mathbb{R} \cong \mathrm{H}^{i}\left(X_{C l}, \mathbb{R}\right)$.

Cohomology Theories

- Let X be a smooth projective variety over \mathbb{C}.
$X_{C l}$: classical topology; $X_{z a r}$: Zariski topology; $X^{\text {an }}$: analytic structure.
- Betti cohomology: $\mathrm{H}^{i}(X, \mathbb{Z})_{B}=\mathrm{H}^{i}\left(X_{c l}, \mathbb{Z}\right)$ gives an integral structure.
- de Rham cohomology:

$$
\mathrm{H}_{d R}^{i}\left(X_{c l}, \mathbb{R}\right)=\frac{\text { closed } i \text { differential forms }}{\text { exact } i \text { differential forms }}
$$

has another structure depending on the field of definition.
de-Rham Theorem: $\mathrm{H}^{i}(X, \mathbb{Z})_{B} \otimes \mathbb{R} \cong \mathrm{H}^{i}\left(X_{c l}, \mathbb{R}\right)$.

- Dolbeault cohomology: $\mathrm{H}^{p, q}\left(X^{a n}\right)=\mathrm{H}^{q}\left(X^{a n}, \Omega_{X}^{p}\right)$ as the sheaf cohomology.
The Dolbeault resolution gives

$$
\mathrm{H}^{p, q}\left(X^{a n}\right)=\frac{\bar{\partial} \text {-closed }(p, q) \text { differential forms }}{\bar{\partial} \text {-exact }(p, q) \text { differential forms }}
$$

Hodge decomposition

Hodge decomposition for a compact Kähler manifold (X, ω)

- $\Delta_{d}=d d^{*}+d^{*} d$ the Laplace operator $\mathcal{H}^{p, q}(X)=$ the set of classes of Δ_{d}-harmonic form of type (p, q) $\mathcal{H}^{p, q}(X)=\overline{\mathcal{H}}^{q, p}(X)$.
- $H^{k}(X, \mathbb{C})=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(X)$, and the decomposition does not depend on the choice of the Kähler form ω.
- $\mathcal{H}^{p, q}(X) \cong H^{p, q}\left(X^{a n}\right)$.

Hodge decomposition

Hodge decomposition for a compact Kähler manifold (X, ω)

- $\Delta_{d}=d d^{*}+d^{*} d$ the Laplace operator $\mathcal{H}^{p, q}(X)=$ the set of classes of Δ_{d}-harmonic form of type (p, q) $\mathcal{H}^{p, q}(X)=\overline{\mathcal{H}}^{q, p}(X)$.
- $H^{k}(X, \mathbb{C})=\bigoplus_{p+q=k} \mathcal{H}^{p, q}(X)$, and the decomposition does not depend on the choice of the Kähler form ω.
- $\mathcal{H}^{p, q}(X) \cong H^{p, q}\left(X^{a n}\right)$.

Hodge structure

- The decomposition of $\mathrm{H}^{i}(X, \mathbb{Z}) \otimes \mathbb{C}$ together with the Hodge symmetry is called the Hodge structure on $\mathrm{H}^{i}(X, \mathbb{Z})$.
- The Hodge structure above together with the bilinear form

$$
(*, *):=* \cup * \cup \omega^{n-i}
$$

is called a polarized Hodge structure.

Hodge classes

Definition

- An integral Hodge class of degree $2 k$ on X is an element α in the space

$$
\operatorname{Hdg}^{2 k}(X, \mathbb{Z})=\mathrm{H}^{2 k}(X, \mathbb{Z}) \cap \mathrm{H}^{k, k}(X)
$$

Hodge classes

Definition

- An integral Hodge class of degree $2 k$ on X is an element α in the space

$$
\operatorname{Hdg}^{2 k}(X, \mathbb{Z})=\mathrm{H}^{2 k}(X, \mathbb{Z}) \cap \mathrm{H}^{k, k}(X)
$$

- When $k=1, \operatorname{Hdg}^{2}(X, \mathbb{Z}) \cong \mathrm{NS}(X)$ is the Neron-Severi group.

Definition

- An integral Hodge class of degree $2 k$ on X is an element α in the space

$$
\operatorname{Hdg}^{2 k}(X, \mathbb{Z})=\mathrm{H}^{2 k}(X, \mathbb{Z}) \cap \mathrm{H}^{k, k}(X)
$$

- When $k=1, \operatorname{Hdg}^{2}(X, \mathbb{Z}) \cong \mathrm{NS}(X)$ is the Neron-Severi group.
- The space of Hodge classes is defined as

$$
\operatorname{Hdg}^{2 k}(X)=\mathrm{H}^{2 k}(X) \cap \mathrm{H}^{k, k}(X)
$$

Definition

- An integral Hodge class of degree $2 k$ on X is an element α in the space

$$
\operatorname{Hdg}^{2 k}(X, \mathbb{Z})=\mathrm{H}^{2 k}(X, \mathbb{Z}) \cap \mathrm{H}^{k, k}(X)
$$

- When $k=1, \operatorname{Hdg}^{2}(X, \mathbb{Z}) \cong \mathrm{NS}(X)$ is the Neron-Severi group.
- The space of Hodge classes is defined as

$$
\operatorname{Hdg}^{2 k}(X)=\mathrm{H}^{2 k}(X) \cap \mathrm{H}^{k, k}(X)
$$

- Hodge Filtration: $\mathrm{F}^{i} \mathrm{H}^{m}(X, \mathbb{C})=\underset{p \geq i}{\bigoplus} \mathrm{H}^{p, q}(X)$ a decreasing filtration of $\mathrm{H}^{m}(X, \mathbb{C})$.
Then $\alpha \in \operatorname{Hdg}^{2 k}(X) \Leftrightarrow \alpha \in \mathrm{H}^{2 k}(X, \mathbb{Q}) \cap \mathrm{F}^{k} \mathrm{H}^{2 k}(X, \mathbb{C})$.

Example: fundamental class of subvarieties

- Let i : $Z \subseteq X$ be a smooth closed subvariety of codimension k, hence a real oriented manifold of dimension $2 n-2 k$.
There is a fundamental class

$$
[Z] \in H_{2 n-2 k}(Z, \mathbb{Z})
$$

which provides a homology class $i_{*}[Z] \in H_{2 n-2 k}(X, \mathbb{Z})$.

Example: fundamental class of subvarieties

- Let i : $Z \subseteq X$ be a smooth closed subvariety of codimension k, hence a real oriented manifold of dimension $2 n-2 k$.
There is a fundamental class

$$
[Z] \in H_{2 n-2 k}(Z, \mathbb{Z})
$$

which provides a homology class $i_{*}[Z] \in H_{2 n-2 k}(X, \mathbb{Z})$.

- Apply the Poincaré isomorphism

$$
\mathrm{H}_{2 n-2 k}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2 k}(X, \mathbb{Z})
$$

to $i_{*}[Z]$ to obtain the integral cycle class $[Z] \in \mathrm{H}^{2 k}(X, \mathbb{Z})$ in cohomology.
The class $[Z]$ is a Hodge class in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$.

Example: fundamental class of subvarieties

- Let $i: Z \subseteq X$ be a smooth closed subvariety of codimension k, hence a real oriented manifold of dimension $2 n-2 k$.
There is a fundamental class

$$
[Z] \in H_{2 n-2 k}(Z, \mathbb{Z})
$$

which provides a homology class $i_{*}[Z] \in H_{2 n-2 k}(X, \mathbb{Z})$.

- Apply the Poincaré isomorphism

$$
\mathrm{H}_{2 n-2 k}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2 k}(X, \mathbb{Z})
$$

to $i_{*}[Z]$ to obtain the integral cycle class $[Z] \in \mathrm{H}^{2 k}(X, \mathbb{Z})$ in cohomology.
The class $[Z]$ is a Hodge class in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$.

- More generally, the Chern classes of coherent sheaves are integral Hodge classes, i.e. $c_{i}(\mathcal{F}) \in \operatorname{Hdg}^{2 i}(X, \mathbb{Z})$.

Hodge conjecture

- X : smooth projective variety over \mathbb{C}.
- We define

$$
\mathcal{Z}^{2 k}(X)=\frac{\operatorname{Hdg}^{2 k}(X)}{<\sum_{i}\left[Z_{i}\right], Z_{i} \subseteq X>}
$$

Hodge conjecture

- X : smooth projective variety over \mathbb{C}.
- We define

$$
\mathcal{Z}^{2 k}(X)=\frac{\operatorname{Hdg}^{2 k}(X)}{<\sum_{i}\left[Z_{i}\right], Z_{i} \subseteq X>}
$$

- A class α in $\mathrm{H}^{2 k}(X, \mathbb{Z})$ is algebraic if α can be written as a linear combination of fundamental classes of subvarieties.

Hodge conjecture

- X : smooth projective variety over \mathbb{C}.
- We define

$$
\mathcal{Z}^{2 k}(X)=\frac{\operatorname{Hdg}^{2 k}(X)}{<\sum_{i}\left[Z_{i}\right], Z_{i} \subseteq X>}
$$

- A class α in $\mathrm{H}^{2 k}(X, \mathbb{Z})$ is algebraic if α can be written as a linear combination of fundamental classes of subvarieties.
- Hodge's original Conjecture, 1950'

The group $\mathcal{Z}^{2 k}(X)$ is zero, i.e. every class in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$ is algebraic.
This is called Hodge's original conjecture or integral Hodge conjecture of degree $2 k$.

Hodge conjecture

- X : smooth projective variety over \mathbb{C}.
- We define

$$
\mathcal{Z}^{2 k}(X)=\frac{\operatorname{Hdg}^{2 k}(X)}{<\sum_{i}\left[Z_{i}\right], Z_{i} \subseteq X>}
$$

- A class α in $\mathrm{H}^{2 k}(X, \mathbb{Z})$ is algebraic if α can be written as a linear combination of fundamental classes of subvarieties.
- Hodge's original Conjecture, 1950'

The group $\mathcal{Z}^{2 k}(X)$ is zero, i.e. every class in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$ is algebraic.
This is called Hodge's original conjecture or integral Hodge conjecture of degree $2 k$.

- Hodge Conjecture of degree 2 k

The group $\mathcal{Z}^{2 k}(X)$ is torsion.

Degree 2: Lefschetz (1,1)-theorem

- On $X^{\text {an }}$, the exponential exact sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\text { exp }} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{\times} \rightarrow 0
$$

induces a long exact sequence

$$
\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \rightarrow \mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right) \rightarrow
$$

- $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \cong$ the group of isomorphism classes of holomorphic line bundles.
- The kernel $\operatorname{ker}\left(\mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right)\right)$ is exactly $\operatorname{Hdg}^{2}(X, \mathbb{Z})$.

Degree 2: Lefschetz (1,1)-theorem

- On $X^{a n}$, the exponential exact sequence

$$
0 \rightarrow \mathbb{Z} \xrightarrow{\text { exp }} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{\times} \rightarrow 0
$$

induces a long exact sequence

$$
\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \rightarrow \mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right) \rightarrow
$$

- $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \cong$ the group of isomorphism classes of holomorphic line bundles.
- The kernel $\operatorname{ker}\left(\mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right)\right)$ is exactly $\operatorname{Hdg}^{2}(X, \mathbb{Z})$.

Lefschetz- $(1,1)$ Theorem

Every class in $\operatorname{Hdg}^{2}(X, \mathbb{Z})$ can be represented by a linear combination of divisor classes.

Failure of Hodge's original conjecture

- The integral Hodge conjecture fails for many reasons.
- Atiyah-Hirzebruch-Totaro: topological obstruction via cobordism. There exist torsion classes in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$, which can be not represented by algebraic classes.

Failure of Hodge's original conjecture

- The integral Hodge conjecture fails for many reasons.
- Atiyah-Hirzebruch-Totaro: topological obstruction via cobordism. There exist torsion classes in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$, which can be not represented by algebraic classes.
- Kollar: non-torsion example.

Theorem

Suppose that $p \neq 2,3$ and $p^{3} \mid d$. A generic hypersurface X of degree d in \mathbb{P}^{4} does not satisfy the integral Hodge conjecture.

Failure of Hodge's original conjecture

- The integral Hodge conjecture fails for many reasons.
- Atiyah-Hirzebruch-Totaro: topological obstruction via cobordism. There exist torsion classes in $\operatorname{Hdg}^{2 k}(X, \mathbb{Z})$, which can be not represented by algebraic classes.
- Kollar: non-torsion example.

Theorem

Suppose that $p \neq 2,3$ and $p^{3} \mid d$. A generic hypersurface X of degree d in \mathbb{P}^{4} does not satisfy the integral Hodge conjecture.

- $\exists X \rightarrow B$ a family of smooth projective varieties and a locally constant integral Hodge class

$$
\alpha_{t} \in \mathrm{H}^{4}\left(X_{t}, \mathbb{Z}\right)
$$

with the property that on a dense subset $B_{a l g} \subseteq B$, the class α_{t} is algebraic, but on its complementary set, the class α_{t} is not algebraic.

Examples for Hodge conjecture of degree 4

We say X admits a decomposition of diagonal if

$$
\begin{equation*}
N \Delta_{X}=Z_{1}+Z_{2} \in \mathrm{CH}_{n}(X \times X) \tag{1}
\end{equation*}
$$

where $Z_{1} \subseteq S \times X$ and $Z_{2} \subseteq X \times W$ for some threefold $S \subseteq X$ and proper subvariety $W \subseteq X$.

Examples for Hodge conjecture of degree 4

We say X admits a decomposition of diagonal if

$$
\begin{equation*}
N \Delta_{X}=Z_{1}+Z_{2} \in \mathrm{CH}_{n}(X \times X) \tag{1}
\end{equation*}
$$

where $Z_{1} \subseteq S \times X$ and $Z_{2} \subseteq X \times W$ for some threefold $S \subseteq X$ and proper subvariety $W \subseteq X$.

Theorem (Bloch \& Srinivas)

If X admits a decomposition of diagonal as above, then the Hodge conjecture of degree 4 holds on X.

Examples for Hodge conjecture of degree 4

We say X admits a decomposition of diagonal if

$$
\begin{equation*}
N \Delta_{X}=Z_{1}+Z_{2} \in \mathrm{CH}_{n}(X \times X) \tag{1}
\end{equation*}
$$

where $Z_{1} \subseteq S \times X$ and $Z_{2} \subseteq X \times W$ for some threefold $S \subseteq X$ and proper subvariety $W \subseteq X$.

Theorem (Bloch \& Srinivas)

If X admits a decomposition of diagonal as above, then the Hodge conjecture of degree 4 holds on X.

An immediate corollary is

Corollary

Hodge conjecture of degree 4 holds on rationally connected varieties. In particular, it holds on Fano varieties.

Examples: algebraicity of Hodge isometry

- Let S be a K3 surface.
- A rational Hodge isometry

$$
\varphi: \mathrm{H}^{2}\left(S_{1}, \mathbb{Q}\right) \cong \mathrm{H}^{2}\left(S_{2}, \mathbb{Q}\right)
$$

can be viewed as a Hodge class in $\operatorname{Hdg}^{4}\left(S_{1} \times S_{2}\right)$ via Kunneth formula.

Examples: algebraicity of Hodge isometry

- Let S be a K3 surface.
- A rational Hodge isometry

$$
\varphi: \mathrm{H}^{2}\left(S_{1}, \mathbb{Q}\right) \cong \mathrm{H}^{2}\left(S_{2}, \mathbb{Q}\right)
$$

can be viewed as a Hodge class in $\operatorname{Hdg}^{4}\left(S_{1} \times S_{2}\right)$ via Kunneth formula.

Theorem (Buskin, Huybrechts)

Any Hodge isometry $\varphi: \mathrm{H}^{2}\left(\mathrm{~S}_{1}, \mathbb{Q}\right) \rightarrow \mathrm{H}^{2}\left(S_{2}, \mathbb{Q}\right)$ between two Kähler K3 surfaces S_{1} and S_{2} is a polynomial in Chern classes of coherent analytic sheaves over $S_{1} \times S_{2}$.

Examples: algebraicity of Hodge isometry

- Let S be a K3 surface.
- A rational Hodge isometry

$$
\varphi: \mathrm{H}^{2}\left(S_{1}, \mathbb{Q}\right) \cong \mathrm{H}^{2}\left(S_{2}, \mathbb{Q}\right)
$$

can be viewed as a Hodge class in $\operatorname{Hdg}^{4}\left(S_{1} \times S_{2}\right)$ via Kunneth formula.

Theorem (Buskin, Huybrechts)

Any Hodge isometry $\varphi: \mathrm{H}^{2}\left(\mathrm{~S}_{1}, \mathbb{Q}\right) \rightarrow \mathrm{H}^{2}\left(\mathrm{~S}_{2}, \mathbb{Q}\right)$ between two Kähler K3 surfaces S_{1} and S_{2} is a polynomial in Chern classes of coherent analytic sheaves over $S_{1} \times S_{2}$.

- Open problem: show the Hodge isogenous

$$
\varphi: \mathrm{H}^{2}(S, \mathbb{Q}) \rightarrow \mathrm{H}^{2}(S, \mathbb{Q})
$$

is algebraic.

HC for abelian varieties

Let A be an abelian variety over \mathbb{C}.

Definition

- Abelian varieties A and A^{\prime} are said to be isogeneous if there is a finite, surjective map : $A \rightarrow A^{\prime}$. It preserves HC.
- A is simple if A is not isogenous to a product of abelian varieties.

HC for abelian varieties

Let A be an abelian variety over \mathbb{C}.

Definition

- Abelian varieties A and A^{\prime} are said to be isogeneous if there is a finite, surjective map : $A \rightarrow A^{\prime}$. It preserves HC.
- A is simple if A is not isogenous to a product of abelian varieties.

An overview of results

- (Mattuck) HC holds for general abelian varieties.
- (Tate) HC holds for a product of elliptic curves.
- (Tankeev) HC holds for abelian varieties whose dimension is a prime.

HC for abelian varieties

Let A be an abelian variety over \mathbb{C}.

Definition

- Abelian varieties A and A^{\prime} are said to be isogeneous if there is a finite, surjective map : $A \rightarrow A^{\prime}$. It preserves HC.
- A is simple if A is not isogenous to a product of abelian varieties.

An overview of results

- (Mattuck) HC holds for general abelian varieties.
- (Tate) HC holds for a product of elliptic curves.
- (Tankeev) HC holds for abelian varieties whose dimension is a prime.
- For examples above, the ring $\operatorname{Hdg}^{*}(X)=\bigoplus \operatorname{Hdg}^{2 i}(X)$ is generated by $\operatorname{Hdg}^{2}(X)$.

HC for abelian varieties

Let A be an abelian variety over \mathbb{C}.

Definition

- Abelian varieties A and A^{\prime} are said to be isogeneous if there is a finite, surjective map : $A \rightarrow A^{\prime}$. It preserves HC.
- A is simple if A is not isogenous to a product of abelian varieties.

An overview of results

- (Mattuck) HC holds for general abelian varieties.
- (Tate) HC holds for a product of elliptic curves.
- (Tankeev) HC holds for abelian varieties whose dimension is a prime.
- For examples above, the ring $\operatorname{Hdg}^{*}(X)=\bigoplus \operatorname{Hdg}^{2 i}(X)$ is generated by $\operatorname{Hdg}^{2}(X)$.
- (Mumford) This fails for some simple abelian fourfold.

HC for abelian varieties: Weil type

- An abelian variety of Weil-type of dimension $2 n$ is a pair (A, K) with A a $2 n$ dimensional abelian variety and

$$
K \rightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

is an imaginary quadratic field such that the action of K on the tangent space $T_{0}(A)$ can be diagonalized as

$$
\operatorname{diag}(\sigma(k), \ldots, \sigma(k), \bar{\sigma}(k), \ldots, \bar{\sigma}(k))(k \in K) .
$$

HC for abelian varieties: Weil type

- An abelian variety of Weil-type of dimension $2 n$ is a pair (A, K) with A a $2 n$ dimensional abelian variety and

$$
K \rightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

is an imaginary quadratic field such that the action of K on the tangent space $T_{0}(A)$ can be diagonalized as

$$
\operatorname{diag}(\sigma(k), \ldots, \sigma(k), \bar{\sigma}(k), \ldots, \bar{\sigma}(k))(k \in K) .
$$

- A polarized abelian variety of Weil-type is a triple (A, K, L) with the polarization on $H^{2}(X, \mathbb{Z})$ as

$$
L(k x, k y)=\sigma(k) \bar{\sigma}(k) L(x, y)
$$

HC for abelian varieties: Weil type

- An abelian variety of Weil-type of dimension $2 n$ is a pair (A, K) with A a $2 n$ dimensional abelian variety and

$$
K \rightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

is an imaginary quadratic field such that the action of K on the tangent space $T_{0}(A)$ can be diagonalized as

$$
\operatorname{diag}(\sigma(k), \ldots, \sigma(k), \bar{\sigma}(k), \ldots, \bar{\sigma}(k))(k \in K)
$$

- A polarized abelian variety of Weil-type is a triple (A, K, L) with the polarization on $H^{2}(X, \mathbb{Z})$ as

$$
L(k x, k y)=\sigma(k) \bar{\sigma}(k) L(x, y)
$$

- Set $K=\mathbb{Q}(\varphi)$, the Hermitian form $H(x, y)=L(\varphi x, y)+L(x, \varphi y)$ can be represented by a diagonal matrix $\operatorname{diag}(a, 1, \ldots, 1,-1, \ldots,-1)$. $a=|\operatorname{det}(H)|>0$ is called the discriminant of (A, K, L).

HC for abelian varieties: Weil type

Theorem (Weil)

For a general $2 n$-dimensional abelian variety X of Weil-type (with $n>1$), one has $\operatorname{Hdg}^{2 n}(X)$ is not generated by $\operatorname{NS}(X)$.

HC for abelian varieties: Weil type

Theorem (Weil)

For a general $2 n$-dimensional abelian variety X of Weil-type (with $n>1$), one has $\operatorname{Hdg}^{2 n}(X)$ is not generated by $\operatorname{NS}(X)$.

Conversely,

Theorem (Moonen-Zarhin)

Let A be a simple abelian variety of dimension 4 with $\operatorname{Hdg}^{4}(X)$ not generated by $\mathrm{NS}(X)$. Then A is of Weil-type.

HC for abelian varieties: Weil type

Theorem (Weil)

For a general $2 n$-dimensional abelian variety X of Weil-type (with $n>1$), one has $\operatorname{Hdg}^{2 n}(X)$ is not generated by $\operatorname{NS}(X)$.

Conversely,

Theorem (Moonen-Zarhin)

Let A be a simple abelian variety of dimension 4 with $\operatorname{Hdg}^{4}(X)$ not generated by $\mathrm{NS}(X)$. Then A is of Weil-type.

Recent progress

Theorem (Markman)

Hodge conjecture holds for generic abelian fourfolds of Weil-type with trivial discriminant $(a=1)$.

