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Introduction

What is Hodge conjecture?
A rough answer: concerns the realization of certain cohomology
classes of projective varieties by combinations of cycles arising from
subvarieties.

Content in this talk:

? Hodge Theory
? Hodge conjecture and its original conjecture
? Examples and Counter examples
? Hodge conjecture for abelian varieties

Goal of this seminar:

? Infinitesimal and generalized Hodge Conjecture
? Hodge conjecture for CM abelian varieties
? Markman’s paper
? Tate conjecture
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Cohomology Theories

Let X be a smooth projective variety over C.
Xcl : classical topology; Xzar : Zariski topology; X an: analytic structure.

Betti cohomology: Hi (X ,Z)B = Hi (Xcl ,Z) gives an integral structure.

de Rham cohomology:

Hi
dR(Xcl ,R) =

closed i differential forms
exact i differential forms

has another structure depending on the field of definition.
de-Rham Theorem: Hi (X ,Z)B ⊗ R ∼= Hi (Xcl ,R).

Dolbeault cohomology: Hp,q(X an) = Hq(X an,Ωp
X ) as the sheaf

cohomology.
The Dolbeault resolution gives

Hp,q(X an) =
∂̄-closed (p,q) differential forms
∂̄-exact (p,q) differential forms
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Hodge decomposition

Hodge decomposition for a compact Kähler manifold (X , ω)

∆d = dd∗ + d∗d the Laplace operator
Hp,q(X ) = the set of classes of ∆d -harmonic form of type (p,q)

Hp,q(X ) = Hq,p
(X ).

Hk (X ,C) =
⊕

p+q=k Hp,q(X ), and the decomposition does not
depend on the choice of the Kähler form ω.

Hp,q(X ) ∼= Hp,q(X an).

Hodge structure

The decomposition of Hi (X ,Z)⊗ C together with the Hodge
symmetry is called the Hodge structure on Hi (X ,Z).

The Hodge structure above together with the bilinear form

(∗, ∗) := ∗ ∪ ∗ ∪ ωn−i

is called a polarized Hodge structure.
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Hodge classes

Definition

An integral Hodge class of degree 2k on X is an element α in the space

Hdg2k (X ,Z) = H2k (X ,Z) ∩ Hk,k (X ).

When k = 1, Hdg2(X ,Z) ∼= NS(X ) is the Neron-Severi group.

The space of Hodge classes is defined as

Hdg2k (X ) = H2k (X ) ∩ Hk,k (X ).

Hodge Filtration: FiHm(X ,C) =
⊕
p≥i

Hp,q(X ) a decreasing filtration

of Hm(X ,C).
Then α ∈ Hdg2k (X )⇔ α ∈ H2k (X ,Q) ∩ Fk H2k (X ,C).
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Example: fundamental class of subvarieties

Let i : Z ⊆ X be a smooth closed subvariety of codimension k , hence
a real oriented manifold of dimension 2n − 2k .
There is a fundamental class

[Z ] ∈ H2n−2k (Z ,Z)

which provides a homology class i∗[Z ] ∈ H2n−2k (X ,Z).

Apply the Poincaré isomorphism

H2n−2k (X ,Z)→ H2k (X ,Z)

to i∗[Z ] to obtain the integral cycle class [Z ] ∈ H2k (X ,Z) in
cohomology.
The class [Z ] is a Hodge class in Hdg2k (X ,Z).

More generally, the Chern classes of coherent sheaves are integral
Hodge classes, i.e. ci (F) ∈ Hdg2i (X ,Z).

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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Hodge conjecture

X : smooth projective variety over C.

We define

Z2k (X ) =
Hdg2k (X )

<
∑

i
[Zi ], Zi ⊆ X >

A class α in H2k (X ,Z) is algebraic if α can be written as a linear
combination of fundamental classes of subvarieties.

Hodge’s original Conjecture, 1950’

The group Z2k (X ) is zero, i.e. every class in Hdg2k (X ,Z) is algebraic.

This is called Hodge’s original conjecture or integral Hodge conjecture
of degree 2k .

Hodge Conjecture of degree 2k

The group Z2k (X ) is torsion.

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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Degree 2: Lefschetz (1,1)-theorem

On X an, the exponential exact sequence

0→ Z exp−−→ OX → O×X → 0

induces a long exact sequence

H1(X ,O×X )→ H2(X ,Z)→ H2(X ,OX )→

H1(X ,O×X ) ∼= the group of isomorphism classes of holomorphic line
bundles.

The kernel ker(H2(X ,Z)→ H2(X ,OX )) is exactly Hdg2(X ,Z).

Lefschetz-(1,1) Theorem

Every class in Hdg2(X ,Z) can be represented by a linear combination of
divisor classes.

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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Failure of Hodge’s original conjecture

The integral Hodge conjecture fails for many reasons.

Atiyah-Hirzebruch-Totaro: topological obstruction via cobordism.
There exist torsion classes in Hdg2k (X ,Z), which can be not
represented by algebraic classes.

Kollar: non-torsion example.

Theorem

Suppose that p 6= 2,3 and p3|d . A generic hypersurface X of degree d in
P4 does not satisfy the integral Hodge conjecture.

∃X → B a family of smooth projective varieties and a locally constant
integral Hodge class

αt ∈ H4(Xt ,Z)

with the property that on a dense subset Balg ⊆ B, the class αt is
algebraic, but on its complementary set, the class αt is not algebraic.

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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Examples for Hodge conjecture of degree 4

We say X admits a decomposition of diagonal if

N∆X = Z1 + Z2 ∈ CHn(X × X ) (1)

where Z1 ⊆ S × X and Z2 ⊆ X ×W for some threefold S ⊆ X and proper
subvariety W ⊆ X .

Theorem (Bloch & Srinivas)

If X admits a decomposition of diagonal as above, then the Hodge
conjecture of degree 4 holds on X .

An immediate corollary is

Corollary
Hodge conjecture of degree 4 holds on rationally connected varieties. In
particular, it holds on Fano varieties.

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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Examples: algebraicity of Hodge isometry

Let S be a K3 surface.

A rational Hodge isometry

ϕ : H2(S1,Q) ∼= H2(S2,Q)

can be viewed as a Hodge class in Hdg4(S1 × S2) via Kunneth
formula.

Theorem (Buskin, Huybrechts)

Any Hodge isometry ϕ : H2(S1,Q)→ H2(S2,Q) between two Kähler K3
surfaces S1 and S2 is a polynomial in Chern classes of coherent analytic
sheaves over S1 × S2.

Open problem: show the Hodge isogenous

ϕ : H2(S,Q)→ H2(S,Q)

is algebraic.

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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HC for abelian varieties

Let A be an abelian variety over C.

Definition

Abelian varieties A and A′ are said to be isogeneous if there is a finite,
surjective map : A→ A′. It preserves HC.

A is simple if A is not isogenous to a product of abelian varieties.

An overview of results

(Mattuck) HC holds for general abelian varieties.

(Tate) HC holds for a product of elliptic curves.

(Tankeev) HC holds for abelian varieties whose dimension is a prime.

For examples above, the ring Hdg∗(X ) =
⊕

Hdg2i (X ) is generated by
Hdg2(X ).

(Mumford) This fails for some simple abelian fourfold.

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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HC for abelian varieties: Weil type

An abelian variety of Weil-type of dimension 2n is a pair (A,K ) with
A a 2n dimensional abelian variety and

K → End(A)⊗Q

is an imaginary quadratic field such that the action of K on the tangent
space T0(A) can be diagonalized as

diag(σ(k), . . . , σ(k), σ̄(k), . . . , σ̄(k))(k ∈ K ).

A polarized abelian variety of Weil-type is a triple (A,K ,L) with the
polarization on H2(X ,Z) as

L(kx , ky) = σ(k)σ̄(k)L(x , y)

Set K = Q(ϕ), the Hermitian form H(x , y) = L(ϕx , y) + L(x , ϕy)
can be represented by a diagonal matrix diag(a,1, . . . ,1,−1, . . . ,−1).
a = |det(H)| > 0 is called the discriminant of (A,K ,L).

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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HC for abelian varieties: Weil type

Theorem (Weil)

For a general 2n-dimensional abelian variety X of Weil-type (with n > 1),
one has Hdg2n(X ) is not generated by NS(X ).

Conversely,

Theorem (Moonen-Zarhin)

Let A be a simple abelian variety of dimension 4 with Hdg4(X ) not
generated by NS(X ). Then A is of Weil-type.

Recent progress

Theorem (Markman)

Hodge conjecture holds for generic abelian fourfolds of Weil-type with
trivial discriminant (a = 1).

Zhiyuan Li, Shanghai Center for Mathematical Science Hodge conjecture
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