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1 Atiyah-Hirzebruch-Totaro topological obstruction

Let X be a smooth projective variety of real dimension 2n over C. The set of its complex
points X(C) naturally forms a complex manifold. We will set

H2k(X,Z) := H2k
sing(X(C),Z) (1)

in the following literature.

Exercise 1.1. Any torsion class s ∈ H2k(X,Z), i.e. there is some integer n such that ns = 0 ∈
H2k(X,Z), is a Hodge class.

As torsion classes in H2k(X,Z) are all Hodge classes, we may ask whether the torsion classes
are all algebraic. Examples of non-algebraic torsion classes are firstly discovered by Atiyah and
Hirzebruch, and revisited by Totaro. We will show in this section that the cycle map factors
through a more refined group, the complex coboardism group.

Definition 1.1. A weakly complex manifold M is a real manifold with a complex structure on
TM ⊕ RN for some integer N .

We identify two complex structure on TM ⊕ RN if they are equivalent in the complex K0

group.
The complex boardism group MUiX is defined to be the free abelian group generated by

all continuous maps M → X from a closed weakly complex manifold M of dimension i to X,
modulo the relations

[M1 qM2 → X] = [M1 → X] + [M2 → X]

[∂M → X] = 0

Definition 1.2. The complex coboardism is defined by MU iX = MU2n−iX and MU∗ =
MU∗(pt).

Note that MU∗X is a MU∗ module via product and there is a map φ : MUjX → Hj(X)

sending [M
f−→ X] to f∗M . By the module structure, MU>0 ·MU∗X are kill by φ. So we get

φ : MU∗X ⊗MU∗ Z→ H∗(X,Z)

Theorem 1.3. We can define a homomorphism from ZiX to MU2iX ⊗MU∗ Z, such that the
composition with φ is the usual cycle map.

In fact, for a cycle Z ⊂ X, we can associate it to [Z ′ → Z → X], where Z ′ → Z is a
resolution of singularities. Then, the composition is the usual cycle map if [Z ′ → Z → X] is
well defined, i.e, independent of resolutions. It is guarenteed by the following theorem.
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Theorem 1.4. If X is a finite cell complex. Then φ : φ : MU∗X ⊗MU∗ Z → H∗(X,Z) is an
isomorphism in degree ≤ 2.

Then, a torsion class not in the image of φ will be a counterexample of the integral Hodge
conjecture. In fact, Atiyah and Hirzebruch constructed a projective variety X which is n-
homotopic to product of some classfying space and satisfies the condition.

2 Kollár’s example

In this section, We will introduce Kollár’s counterexample, finding non-algebraic Hodge
classes with some multiple algebraic.

Let X ⊂ P4 be a smooth hypersurface of degree d. Then, H4(X,Z) = Zα with deg α = 1,
by Lefschetz hyperplane theorem and Poincare duality. We will show that all curves on some
X are of degree divided by a fixed integer p > 1. So α can’t be algebraic.

Theorem 2.1. Assume (p, 6) = 1, d = p3s. then for very general X and any curve C ⊂ X, we
have p|degC

Proof. We firstly find one singular X0 satisfying the conclusion and then a deform very general
hypersurface to X0.

Let Y ⊂ P4 be a smooth hypersurface of degree s. We have the following

f : Y ⊂ P4 |OP4 (p)|
−→ PN projection−→ P4

and set X0 = f(Y ), where the projection is general.
Estimating the dimensions, we find that f is generic finite, 2 to 1 over a surface, 3 to 1 over

a curve and 4 to 1 over finite points.
Then, if C0 is a curve on X0, we can find a curve C ′0 ⊂ Y , such that f∗C

′
0 = 6C0. Thus we

find p|degC0 by projection formula and (p, 6) = 1.
Next, we deform a very general C ⊂ X to C0 ⊂ X0. Let PN be the projective space of

all polynomials of degree d on P4, and let X → PN be the universal hypersurface. Define the
relative Hilbert schemes

Hν → PN ,

parameterizing pairs {(C,X), Z ⊂ X}, where C is a curve with Hilbert polynomial ν. We know
that there are only countably many Hilbert polynomials since they are determined by degree
and genus.

we have the following :

• The morphism gν : Hν → PN is projective and qgν dominates PN

• There exists a universal subscheme Zν ⊂ Hν ×PN X which is flat over Hν .

Let U = PN \
⋃
ν∈I gν(Hν), where I is the set of ν such that gν is not surjective. U is

nonempty since qgν dominates PN . Therefore, for X in U , any curve C ⊂ X can be deformed
to a curve C ′ ⊂ X0. Then the theorem follows by the flatness of the universal cycle.
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3 Cubic fourfolds

In this section, we show that the integral Hodge conjecture is true for cubic fourfolds. Firstly,
we recall some facts about intermediate Jacobian.

Let X be a smooth projective variety of dimension n. We have the Hodge decomposition:

H2k−1(X,C) = F kH2k−1(X)⊕ F kH2k−1(X)

So H2k−1(X,Z) can be seen as a lattice in H2k−1(X,C)/F kH2k−1(X) and we have the
following definition:

Definition 3.1. The kth intermediate Jacobian of X ie the complex torus

J2k−1(X) = H2k−1(X,C)/(F kH2k−1(X)⊕H2k−1(X,Z))

If a cycle Z ∈ Zk(X) is homologous to 0, there is a differentiable chain Γ ⊂ X of dimension
20 − 2k + 1 such that ∂Γ = Z. Using the fact that Z is of deg (k, k) and the Stokes formula,
we may get

∫
Γ ∈ H

2k−1(X,C)/F kH2k−1(X). Further, if ∂Γ′ = Z for another Γ′, we can show
that

∫
Γ−

∫
Γ′ ∈ H

2k−1(X,Z). Combining those, we get the so called the Abel-Jacobi map:

Φk
X : Zk(X)hom → J2k−1(X)

Z 7→
∫

Γ

We introduce another way to define intermediate Jacobian, that is, Deligne cohomology. We
define the Deligne complex ZD(p) to be

0→ Z→ OX → ΩX → · · · → Ωp−1
X → 0

and the Deligne cohomology Hk
D(X,Z(p)) is just the hypercohomology of the Deligne com-

plex.
We know the Deligne complex fits into a short exact sequence:

0→ Ω≤p−1[1]→ ZD(p)→ Z→ 0

Run the corresponding long exact sequence and combine the fact thatHk(X,Ω≤p−1) = Hk(X,C)/F pHk(X),
we get

0→ J2p−1(X)→ H2p
D (X,Z(p))→ Hdg2p(X,Z)→ 0

The story is similar in relative version. Let X
π→ B be a smooth projective morphism.

Denote H2k−1
Z = R2k−1π∗Z and F pH2k−1 = R2k−1π∗Ω

≥p
X|B.

Then, the intermediate Jacobian in family J 2k−1 → B is defined by:

0→ H2k−1
Z → H2k−1/F kH2k−1 → J 2k−1 → 0

If s ∈ H0(B,J 2k−1) is a holomorphic section of J 2k−1 → B, we get an element φ(s) vie the
boundary map φH0(B,J 2k−1)→ H1(B,H2k−1

Z ).
We need a theorem of Griffths:

Theorem 3.2. if Z ∈ Zk(X)hom is flat over B, wen can define a holomorphic morphism via
Abel-Jacobi maps:

ΦZ :B −→ J 2k−1

b 7−→ Φk
Xb

(Zb)
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In particular, it shows that the Abel-Jacobi map factor through CHk(X)hom, since the image
of the Abel-Jacobi map is contained in a abelian variety which do not contain any rational curve.

We now come back to a cubic fourfold Y . Since H6(Y,Z) is generated by a line and Y does
contain a line, we only need to show the degree 4 case. The strategy is to associate a Hodge
class α ∈ Hdg4(Y,Z) a section of intermediate Jacobians in a certain family, and to show that
the section comes from a algebraic cycle.

Let {Xt}t∈P1 be a pencil of hyperplane sections with base locus a cubic surface S and X is
the blow up of Y along S. We have:

X
τ //

π
��

Y

P1

There exists a line l ⊂ S and a integer d such that α|Xt = dl, since Xt and S are cubic threefold
and surface. We can compute by blow up formula that H3(X,Z) = 0 . Hence J3(X) = 0

let β = τ∗α− d[l × P1]. Then β|Xt = 0. Consider the following diagram:

0 // J3(X) //

ft
��

H4
D(X,Z(2)) //

gt
��

Hdg4(X,Z) //

ht
��

0

0 // J3(Xt) // H4
D(Xt,Z(2)) // Hdg4(Xt,Z) // 0

The boundary map is ker(ht) → coker(ft). Since β|Xt = 0 and J3(X) = 0, we get a section
ϕβ : B → J 3. Zucker shows that this section is holomorphic and compatible with the Abel-
Jacobi map. It is also showed that if another element in ker(ht) defines the same section with
ϕβ, they only differ by elements in fibres of X → P1, which are algebraic.

Thus, it is enough to show that ∃Z ∈ Z2(X)hom, such that the section defined by Z as in
theorem 5 is the same with ϕβ.

We need the following theorem of Markushevitch and Tikhomirov:

Theorem 3.3. The moduli space Mt of semi stable rank 2 torsion free sheaves with c1 = 0 and
c2 = 2l on Xt is birational to J3(Xt) via the Abel-Jacobi map E 7→ Φ2

X(c2(E)− 2l).

Then, we consider M =
⋃
t∈P1 Mt and construct a object P over M parametrizing curves

in Xt. We want to find some family of curves in P defining the same section with ϕβ via the
Abel-Jacobi map. Then, the surface swept out by the family of curves maps to class of α+ kS
for some k via τ and it implies that α is algebraic.

P → M is constructed as following. The fibre over Es ∈ Mt is P(H0(Xt, Es(k)) for a
sufficiently large k. For a general section in H0(Xt, Es(k), its zero locus is a curve,. Hence P
parametrizes curves in Xt and compatible with the Abel-Jacobi map.

Then, it is enough to show that the section ϕβ can be lift to a section B → P via P →
M → J 3. It is due to M is birational to J 3 and the Brauer group of a curve is trivial. That’s
complete the proof.
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