Seminar2020-02: Examples of the integral Hodge conjecture

Ruxuan Zhang

April 2020

1 Atiyah-Hirzebruch-Totaro topological obstruction

Let X be a smooth projective variety of real dimension $2 n$ over \mathbb{C}. The set of its complex points $X(\mathbb{C})$ naturally forms a complex manifold. We will set

$$
\begin{equation*}
H^{2 k}(X, \mathbb{Z}):=H_{\text {sing }}^{2 k}(X(\mathbb{C}), \mathbb{Z}) \tag{1}
\end{equation*}
$$

in the following literature.
Exercise 1.1. Any torsion class $s \in H^{2 k}(X, \mathbb{Z})$, i.e. there is some integer n such that $n s=0 \in$ $H^{2 k}(X, \mathbb{Z})$, is a Hodge class.

As torsion classes in $H^{2 k}(X, \mathbb{Z})$ are all Hodge classes, we may ask whether the torsion classes are all algebraic. Examples of non-algebraic torsion classes are firstly discovered by Atiyah and Hirzebruch, and revisited by Totaro. We will show in this section that the cycle map factors through a more refined group, the complex coboardism group.

Definition 1.1. A weakly complex manifold M is a real manifold with a complex structure on $T M \oplus \mathbb{R}^{N}$ for some integer N.

We identify two complex structure on $T M \oplus \mathbb{R}^{N}$ if they are equivalent in the complex K_{0} group.

The complex boardism group $M U_{i} X$ is defined to be the free abelian group generated by all continuous maps $M \rightarrow X$ from a closed weakly complex manifold M of dimension i to X, modulo the relations

$$
\begin{aligned}
{\left[M_{1} \amalg M_{2} \rightarrow\right.} & X]=\left[M_{1} \rightarrow X\right]+\left[M_{2} \rightarrow X\right] \\
& {[\partial M \rightarrow X]=0 }
\end{aligned}
$$

Definition 1.2. The complex coboardism is defined by $M U^{i} X=M U_{2 n-i} X$ and $M U_{*}=$ $M U_{*}(p t)$.

Note that $M U_{*} X$ is a $M U_{*}$ module via product and there is a map $\phi: M U_{j} X \rightarrow H_{j}(X)$ sending $[M \xrightarrow{f} X]$ to $f_{*} M$. By the module structure, $M U_{>0} \cdot M U_{*} X$ are kill by ϕ. So we get

$$
\phi: M U_{*} X \otimes_{M U_{*}} \mathbb{Z} \rightarrow H_{*}(X, \mathbb{Z})
$$

Theorem 1.3. We can define a homomorphism from $Z_{i} X$ to $M U_{2 i} X \otimes_{M U_{*}} \mathbb{Z}$, such that the composition with ϕ is the usual cycle map.

In fact, for a cycle $Z \subset X$, we can associate it to $\left[Z^{\prime} \rightarrow Z \rightarrow X\right]$, where $Z^{\prime} \rightarrow Z$ is a resolution of singularities. Then, the composition is the usual cycle map if $\left[Z^{\prime} \rightarrow Z \rightarrow X\right]$ is well defined, i.e, independent of resolutions. It is guarenteed by the following theorem.

Theorem 1.4. If X is a finite cell complex. Then $\phi: \phi: M U^{*} X \otimes_{M U^{*}} \mathbb{Z} \rightarrow H^{*}(X, \mathbb{Z})$ is an isomorphism in degree ≤ 2.

Then, a torsion class not in the image of ϕ will be a counterexample of the integral Hodge conjecture. In fact, Atiyah and Hirzebruch constructed a projective variety X which is nhomotopic to product of some classfying space and satisfies the condition.

2 Kollár's example

In this section, We will introduce Kollár's counterexample, finding non-algebraic Hodge classes with some multiple algebraic.

Let $X \subset \mathbb{P}^{4}$ be a smooth hypersurface of degree d. Then, $H^{4}(X, \mathbb{Z})=\mathbb{Z} \alpha$ with $\operatorname{deg} \alpha=1$, by Lefschetz hyperplane theorem and Poincare duality. We will show that all curves on some X are of degree divided by a fixed integer $p>1$. So α can't be algebraic.

Theorem 2.1. Assume $(p, 6)=1, d=p^{3} s$. then for very general X and any curve $C \subset X$, we have $p \mid \operatorname{deg} C$

Proof. We firstly find one singular X_{0} satisfying the conclusion and then a deform very general hypersurface to X_{0}.

Let $Y \subset \mathbb{P}^{4}$ be a smooth hypersurface of degree s. We have the following

$$
f: Y \subset \mathbb{P}^{4} \xrightarrow{\left|\mathcal{O}_{\mathbb{P}^{4}}(p)\right|} \mathbb{P}^{N} \xrightarrow{\text { projection }} \mathbb{P}^{4}
$$

and set $X_{0}=f(Y)$, where the projection is general.
Estimating the dimensions, we find that f is generic finite, 2 to 1 over a surface, 3 to 1 over a curve and 4 to 1 over finite points.

Then, if C_{0} is a curve on X_{0}, we can find a curve $C_{0}^{\prime} \subset Y$, such that $f_{*} C_{0}^{\prime}=6 C_{0}$. Thus we find $p \mid \operatorname{deg} C_{0}$ by projection formula and $(p, 6)=1$.

Next, we deform a very general $C \subset X$ to $C_{0} \subset X_{0}$. Let \mathbb{P}^{N} be the projective space of all polynomials of degree d on \mathbb{P}^{4}, and let $\mathcal{X} \rightarrow \mathbb{P}^{N}$ be the universal hypersurface. Define the relative Hilbert schemes

$$
\mathcal{H}_{\nu} \rightarrow \mathbb{P}^{N}
$$

parameterizing pairs $\{(C, X), Z \subset X\}$, where C is a curve with Hilbert polynomial ν. We know that there are only countably many Hilbert polynomials since they are determined by degree and genus.
we have the following :

- The morphism $g_{\nu}: \mathcal{H}_{\nu} \rightarrow \mathbb{P}^{N}$ is projective and $\amalg g_{\nu}$ dominates \mathbb{P}^{N}
- There exists a universal subscheme $\mathcal{Z}_{\nu} \subset \mathcal{H}_{\nu} \times_{\mathbb{P}^{N}} \mathcal{X}$ which is flat over \mathcal{H}_{ν}.

Let $U=\mathbb{P}^{N} \backslash \bigcup_{\nu \in I} g_{\nu}\left(\mathcal{H}_{\nu}\right)$, where I is the set of ν such that g_{ν} is not surjective. U is nonempty since $\amalg g_{\nu}$ dominates \mathbb{P}^{N}. Therefore, for X in U, any curve $C \subset X$ can be deformed to a curve $C^{\prime} \subset X_{0}$. Then the theorem follows by the flatness of the universal cycle.

3 Cubic fourfolds

In this section, we show that the integral Hodge conjecture is true for cubic fourfolds. Firstly, we recall some facts about intermediate Jacobian.

Let X be a smooth projective variety of dimension n. We have the Hodge decomposition:

$$
H^{2 k-1}(X, \mathbb{C})=F^{k} H^{2 k-1}(X) \oplus \overline{F^{k} H^{2 k-1}(X)}
$$

So $H^{2 k-1}(X, \mathbb{Z})$ can be seen as a lattice in $H^{2 k-1}(X, \mathbb{C}) / F^{k} H^{2 k-1}(X)$ and we have the following definition:

Definition 3.1. The kth intermediate Jacobian of X ie the complex torus

$$
J^{2 k-1}(X)=H^{2 k-1}(X, \mathbb{C}) /\left(F^{k} H^{2 k-1}(X) \oplus H^{2 k-1}(X, \mathbb{Z})\right)
$$

If a cycle $Z \in Z^{k}(X)$ is homologous to 0 , there is a differentiable chain $\Gamma \subset X$ of dimension $20-2 k+1$ such that $\partial \Gamma=Z$. Using the fact that Z is of $\operatorname{deg}(k, k)$ and the Stokes formula, we may get $\int_{\Gamma} \in H^{2 k-1}(X, \mathbb{C}) / F^{k} H^{2 k-1}(X)$. Further, if $\partial \Gamma^{\prime}=Z$ for another Γ^{\prime}, we can show that $\int_{\Gamma}-\int_{\Gamma^{\prime}} \in H^{2 k-1}(X, \mathbb{Z})$. Combining those, we get the so called the Abel-Jacobi map:

$$
\begin{aligned}
\Phi_{X}^{k}: Z^{k}(X)_{h o m} & \rightarrow J^{2 k-1}(X) \\
Z & \mapsto \int_{\Gamma}
\end{aligned}
$$

We introduce another way to define intermediate Jacobian, that is, Deligne cohomology. We define the Deligne complex $\mathbb{Z}_{D}(p)$ to be

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X} \rightarrow \Omega_{X} \rightarrow \cdots \rightarrow \Omega_{X}^{p-1} \rightarrow 0
$$

and the Deligne cohomology $H_{D}^{k}(X, \mathbb{Z}(p))$ is just the hypercohomology of the Deligne complex.

We know the Deligne complex fits into a short exact sequence:

$$
0 \rightarrow \Omega^{\leq p-1}[1] \rightarrow \mathbb{Z}_{D}(p) \rightarrow \mathbb{Z} \rightarrow 0
$$

Run the corresponding long exact sequence and combine the fact that $H^{k}(X, \Omega \leq p-1)=H^{k}(X, \mathbb{C}) / F^{p} H^{k}(X)$, we get

$$
0 \rightarrow J^{2 p-1}(X) \rightarrow H_{D}^{2 p}(X, \mathbb{Z}(p)) \rightarrow H d g^{2 p}(X, \mathbb{Z}) \rightarrow 0
$$

The story is similar in relative version. Let $X \xrightarrow{\pi} B$ be a smooth projective morphism. Denote $\mathcal{H}_{\mathbb{Z}}^{2 k-1}=R^{2 k-1} \pi_{*} \mathbb{Z}$ and $F^{p} \mathcal{H}^{2 k-1}=R^{2 k-1} \pi_{*} \Omega_{X \mid B}^{\geq p}$.

Then, the intermediate Jacobian in family $\mathcal{J}^{2 k-1} \rightarrow B$ is defined by:

$$
0 \rightarrow \mathcal{H}_{\mathbb{Z}}^{2 k-1} \rightarrow \mathcal{H}^{2 k-1} / F^{k} \mathcal{H}^{2 k-1} \rightarrow \mathcal{J}^{2 k-1} \rightarrow 0
$$

If $s \in H^{0}\left(B, \mathcal{J}^{2 k-1}\right)$ is a holomorphic section of $\mathcal{J}^{2 k-1} \rightarrow B$, we get an element $\phi(s)$ vie the boundary map $\phi H^{0}\left(B, \mathcal{J}^{2 k-1}\right) \rightarrow H^{1}\left(B, \mathcal{H}_{\mathbb{Z}}^{2 k-1}\right)$.

We need a theorem of Griffths:
Theorem 3.2. if $Z \in Z^{k}(X)_{\text {hom }}$ is flat over B, wen can define a holomorphic morphism via Abel-Jacobi maps:

$$
\begin{aligned}
\Phi_{Z}: B & \longrightarrow \mathcal{J}^{2 k-1} \\
b & \longmapsto \Phi_{X_{b}}^{k}\left(Z_{b}\right)
\end{aligned}
$$

In particular, it shows that the Abel-Jacobi map factor through $C H^{k}(X)_{h o m}$, since the image of the Abel-Jacobi map is contained in a abelian variety which do not contain any rational curve.

We now come back to a cubic fourfold Y. Since $H^{6}(Y, \mathbb{Z})$ is generated by a line and Y does contain a line, we only need to show the degree 4 case. The strategy is to associate a Hodge class $\alpha \in H d g^{4}(Y, \mathbb{Z})$ a section of intermediate Jacobians in a certain family, and to show that the section comes from a algebraic cycle.

Let $\left\{X_{t}\right\}_{t \in \mathbb{P}^{1}}$ be a pencil of hyperplane sections with base locus a cubic surface S and X is the blow up of Y along S. We have:

There exists a line $l \subset S$ and a integer d such that $\left.\alpha\right|_{X_{t}}=d l$, since X_{t} and S are cubic threefold and surface. We can compute by blow up formula that $H^{3}(X, \mathbb{Z})=0$. Hence $J^{3}(X)=0$
let $\beta=\tau^{*} \alpha-d\left[l \times \mathbb{P}^{1}\right]$. Then $\left.\beta\right|_{X_{t}}=0$. Consider the following diagram:

The boundary map is $\operatorname{ker}\left(h_{t}\right) \rightarrow \operatorname{coker}\left(f_{t}\right)$. Since $\left.\beta\right|_{X_{t}}=0$ and $J^{3}(X)=0$, we get a section $\varphi_{\beta}: B \rightarrow \mathcal{J}^{3}$. Zucker shows that this section is holomorphic and compatible with the AbelJacobi map. It is also showed that if another element in $\operatorname{ker}\left(h_{t}\right)$ defines the same section with φ_{β}, they only differ by elements in fibres of $X \rightarrow \mathbb{P}^{1}$, which are algebraic.

Thus, it is enough to show that $\exists Z \in Z^{2}(X)_{h o m}$, such that the section defined by Z as in theorem 5 is the same with φ_{β}.

We need the following theorem of Markushevitch and Tikhomirov:
Theorem 3.3. The moduli space M_{t} of semi stable rank 2 torsion free sheaves with $c_{1}=0$ and $c_{2}=2 l$ on X_{t} is birational to $J^{3}\left(X_{t}\right)$ via the Abel-Jacobi map $E \mapsto \Phi_{X}^{2}\left(c_{2}(E)-2 l\right)$.

Then, we consider $M=\bigcup_{t \in \mathbb{P}^{1}} M_{t}$ and construct a object P over M parametrizing curves in X_{t}. We want to find some family of curves in P defining the same section with φ_{β} via the Abel-Jacobi map. Then, the surface swept out by the family of curves maps to class of $\alpha+k S$ for some k via τ and it implies that α is algebraic.
$P \rightarrow M$ is constructed as following. The fibre over $E_{s} \in M_{t}$ is $\mathbb{P}\left(H^{0}\left(X_{t}, E_{s}(k)\right)\right.$ for a sufficiently large k. For a general section in $H^{0}\left(X_{t}, E_{s}(k)\right.$, its zero locus is a curve,. Hence P parametrizes curves in X_{t} and compatible with the Abel-Jacobi map.

Then, it is enough to show that the section φ_{β} can be lift to a section $B \rightarrow P$ via $P \rightarrow$ $M \rightarrow \mathcal{J}^{3}$. It is due to M is birational to \mathcal{J}^{3} and the Brauer group of a curve is trivial. That's complete the proof.

