Seminar2020-02: Examples of the integral Hodge conjecture

Ruxuan Zhang

April 2020

1 Atiyah-Hirzebruch-Totaro topological obstruction

Let X be a smooth projective variety of real dimension 2n over \mathbb{C} . The set of its complex points $X(\mathbb{C})$ naturally forms a complex manifold. We will set

$$H^{2k}(X,\mathbb{Z}) \coloneqq H^{2k}_{\text{sing}}(X(\mathbb{C}),\mathbb{Z}) \tag{1}$$

in the following literature.

Exercise 1.1. Any torsion class $s \in H^{2k}(X, \mathbb{Z})$, i.e. there is some integer n such that $ns = 0 \in H^{2k}(X, \mathbb{Z})$, is a Hodge class.

As torsion classes in $H^{2k}(X,\mathbb{Z})$ are all Hodge classes, we may ask whether the torsion classes are all algebraic. Examples of non-algebraic torsion classes are firstly discovered by Atiyah and Hirzebruch, and revisited by Totaro. We will show in this section that the cycle map factors through a more refined group, the complex coboardism group.

Definition 1.1. A weakly complex manifold M is a real manifold with a complex structure on $TM \oplus \mathbb{R}^N$ for some integer N.

We identify two complex structure on $TM \oplus \mathbb{R}^N$ if they are equivalent in the complex K_0 group.

The complex boardism group MU_iX is defined to be the free abelian group generated by all continuous maps $M \to X$ from a closed weakly complex manifold M of dimension i to X, modulo the relations

$$[M_1 \amalg M_2 \to X] = [M_1 \to X] + [M_2 \to X]$$
$$[\partial M \to X] = 0$$

Definition 1.2. The complex coboardism is defined by $MU^iX = MU_{2n-i}X$ and $MU_* = MU_*(pt)$.

Note that MU_*X is a MU_* module via product and there is a map $\phi: MU_jX \to H_j(X)$ sending $[M \xrightarrow{f} X]$ to f_*M . By the module structure, $MU_{>0} \cdot MU_*X$ are kill by ϕ . So we get

$$\phi: MU_*X \otimes_{MU_*} \mathbb{Z} \to H_*(X, \mathbb{Z})$$

Theorem 1.3. We can define a homomorphism from Z_iX to $MU_{2i}X \otimes_{MU_*} \mathbb{Z}$, such that the composition with ϕ is the usual cycle map.

In fact, for a cycle $Z \subset X$, we can associate it to $[Z' \to Z \to X]$, where $Z' \to Z$ is a resolution of singularities. Then, the composition is the usual cycle map if $[Z' \to Z \to X]$ is well defined, i.e, independent of resolutions. It is guaranteed by the following theorem.

Theorem 1.4. If X is a finite cell complex. Then $\phi : \phi : MU^*X \otimes_{MU^*} \mathbb{Z} \to H^*(X,\mathbb{Z})$ is an isomorphism in degree ≤ 2 .

Then, a torsion class not in the image of ϕ will be a counterexample of the integral Hodge conjecture. In fact, Atiyah and Hirzebruch constructed a projective variety X which is n-homotopic to product of some classfying space and satisfies the condition.

2 Kollár's example

In this section, We will introduce Kollár's counterexample, finding non-algebraic Hodge classes with some multiple algebraic.

Let $X \subset \mathbb{P}^4$ be a smooth hypersurface of degree d. Then, $H^4(X, \mathbb{Z}) = \mathbb{Z}\alpha$ with deg $\alpha = 1$, by Lefschetz hyperplane theorem and Poincare duality. We will show that all curves on some X are of degree divided by a fixed integer p > 1. So α can't be algebraic.

Theorem 2.1. Assume (p, 6) = 1, $d = p^3 s$. then for very general X and any curve $C \subset X$, we have p|degC

Proof. We firstly find one singular X_0 satisfying the conclusion and then a deform very general hypersurface to X_0 .

Let $Y \subset \mathbb{P}^4$ be a smooth hypersurface of degree s. We have the following

$$f: Y \subset \mathbb{P}^4 \xrightarrow{|\mathcal{O}_{\mathbb{P}^4}(p)|} \mathbb{P}^N \xrightarrow{projection} \mathbb{P}^4$$

and set $X_0 = f(Y)$, where the projection is general.

Estimating the dimensions, we find that f is generic finite, 2 to 1 over a surface, 3 to 1 over a curve and 4 to 1 over finite points.

Then, if C_0 is a curve on X_0 , we can find a curve $C'_0 \subset Y$, such that $f_*C'_0 = 6C_0$. Thus we find $p|degC_0$ by projection formula and (p, 6) = 1.

Next, we deform a very general $C \subset X$ to $C_0 \subset X_0$. Let \mathbb{P}^N be the projective space of all polynomials of degree d on \mathbb{P}^4 , and let $\mathcal{X} \to \mathbb{P}^N$ be the universal hypersurface. Define the relative Hilbert schemes

$$\mathcal{H}_{\nu} \to \mathbb{P}^{N}.$$

parameterizing pairs $\{(C, X), Z \subset X\}$, where C is a curve with Hilbert polynomial ν . We know that there are only countably many Hilbert polynomials since they are determined by degree and genus.

we have the following :

- The morphism $g_{\nu} : \mathcal{H}_{\nu} \to \mathbb{P}^N$ is projective and $\amalg g_{\nu}$ dominates \mathbb{P}^N
- There exists a universal subscheme $\mathcal{Z}_{\nu} \subset \mathcal{H}_{\nu} \times_{\mathbb{P}^N} \mathcal{X}$ which is flat over \mathcal{H}_{ν} .

Let $U = \mathbb{P}^N \setminus \bigcup_{\nu \in I} g_{\nu}(\mathcal{H}_{\nu})$, where I is the set of ν such that g_{ν} is not surjective. U is nonempty since $\amalg g_{\nu}$ dominates \mathbb{P}^N . Therefore, for X in U, any curve $C \subset X$ can be deformed to a curve $C' \subset X_0$. Then the theorem follows by the flatness of the universal cycle.

3 Cubic fourfolds

In this section, we show that the integral Hodge conjecture is true for cubic fourfolds. Firstly, we recall some facts about intermediate Jacobian.

Let X be a smooth projective variety of dimension n. We have the Hodge decomposition:

$$H^{2k-1}(X,\mathbb{C}) = F^k H^{2k-1}(X) \oplus \overline{F^k H^{2k-1}(X)}$$

So $H^{2k-1}(X,\mathbb{Z})$ can be seen as a lattice in $H^{2k-1}(X,\mathbb{C})/F^kH^{2k-1}(X)$ and we have the following definition:

Definition 3.1. The kth intermediate Jacobian of X is the complex torus

$$J^{2k-1}(X) = H^{2k-1}(X, \mathbb{C}) / (F^k H^{2k-1}(X) \oplus H^{2k-1}(X, \mathbb{Z}))$$

If a cycle $Z \in Z^k(X)$ is homologous to 0, there is a differentiable chain $\Gamma \subset X$ of dimension 20 - 2k + 1 such that $\partial \Gamma = Z$. Using the fact that Z is of deg (k, k) and the Stokes formula, we may get $\int_{\Gamma} \in H^{2k-1}(X, \mathbb{C})/F^k H^{2k-1}(X)$. Further, if $\partial \Gamma' = Z$ for another Γ' , we can show that $\int_{\Gamma} - \int_{\Gamma'} \in H^{2k-1}(X, \mathbb{Z})$. Combining those, we get the so called the Abel-Jacobi map:

$$\Phi^k_X : Z^k(X)_{hom} \to J^{2k-1}(X)$$
$$Z \quad \mapsto \quad \int_{\Gamma}$$

We introduce another way to define intermediate Jacobian, that is, Deligne cohomology. We define the Deligne complex $\mathbb{Z}_D(p)$ to be

$$0 \to \mathbb{Z} \to \mathcal{O}_X \to \Omega_X \to \dots \to \Omega_X^{p-1} \to 0$$

and the Deligne cohomology $H^k_D(X,\mathbb{Z}(p))$ is just the hypercohomology of the Deligne complex.

We know the Deligne complex fits into a short exact sequence:

$$0 \to \Omega^{\leq p-1}[1] \to \mathbb{Z}_D(p) \to \mathbb{Z} \to 0$$

Run the corresponding long exact sequence and combine the fact that $H^k(X, \Omega^{\leq p-1}) = H^k(X, \mathbb{C})/F^p H^k(X)$, we get

$$0 \to J^{2p-1}(X) \to H^{2p}_D(X, \mathbb{Z}(p)) \to Hdg^{2p}(X, \mathbb{Z}) \to 0$$

The story is similar in relative version. Let $X \xrightarrow{\pi} B$ be a smooth projective morphism. Denote $\mathcal{H}^{2k-1}_{\mathbb{Z}} = R^{2k-1}\pi_*\mathbb{Z}$ and $F^p\mathcal{H}^{2k-1} = R^{2k-1}\pi_*\Omega^{\geq p}_{X|B}$.

Then, the intermediate Jacobian in family $\mathcal{J}^{2k-1} \to B$ is defined by:

$$0 \to \mathcal{H}^{2k-1}_{\mathbb{Z}} \to \mathcal{H}^{2k-1}/F^k\mathcal{H}^{2k-1} \to \mathcal{J}^{2k-1} \to 0$$

If $s \in H^0(B, \mathcal{J}^{2k-1})$ is a holomorphic section of $\mathcal{J}^{2k-1} \to B$, we get an element $\phi(s)$ vie the boundary map $\phi H^0(B, \mathcal{J}^{2k-1}) \to H^1(B, \mathcal{H}^{2k-1}_{\mathbb{Z}})$.

We need a theorem of Griffths:

Theorem 3.2. if $Z \in Z^k(X)_{hom}$ is flat over B, wen can define a holomorphic morphism via Abel-Jacobi maps:

$$\Phi_Z : B \longrightarrow \mathcal{J}^{2k-1}$$
$$b \longmapsto \Phi_{X_b}^k(Z_b)$$

In particular, it shows that the Abel-Jacobi map factor through $CH^k(X)_{hom}$, since the image of the Abel-Jacobi map is contained in a abelian variety which do not contain any rational curve.

We now come back to a cubic fourfold Y. Since $H^6(Y,\mathbb{Z})$ is generated by a line and Y does contain a line, we only need to show the degree 4 case. The strategy is to associate a Hodge class $\alpha \in Hdg^4(Y,\mathbb{Z})$ a section of intermediate Jacobians in a certain family, and to show that the section comes from a algebraic cycle.

Let $\{X_t\}_{t\in\mathbb{P}^1}$ be a pencil of hyperplane sections with base locus a cubic surface S and X is the blow up of Y along S. We have:

There exists a line $l \subset S$ and a integer d such that $\alpha|_{X_t} = dl$, since X_t and S are cubic threefold and surface. We can compute by blow up formula that $H^3(X, \mathbb{Z}) = 0$. Hence $J^3(X) = 0$ let $\beta = \tau^* \alpha - d[l \times \mathbb{P}^1]$. Then $\beta|_{X_t} = 0$. Consider the following diagram:

 $\mathbf{I}_{3}(\mathbf{V}) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{V}_{2}(\mathbf{0})) = \mathbf{I}_{4}(\mathbf{V}_{2}(\mathbf{$

The boundary map is $ker(h_t) \to coker(f_t)$. Since $\beta|_{X_t} = 0$ and $J^3(X) = 0$, we get a section $\varphi_{\beta} : B \to \mathcal{J}^3$. Zucker shows that this section is holomorphic and compatible with the Abel-Jacobi map. It is also showed that if another element in $ker(h_t)$ defines the same section with φ_{β} , they only differ by elements in fibres of $X \to \mathbb{P}^1$, which are algebraic.

Thus, it is enough to show that $\exists Z \in Z^2(X)_{hom}$, such that the section defined by Z as in theorem 5 is the same with φ_β .

We need the following theorem of Markushevitch and Tikhomirov:

Theorem 3.3. The moduli space M_t of semi stable rank 2 torsion free sheaves with $c_1 = 0$ and $c_2 = 2l$ on X_t is birational to $J^3(X_t)$ via the Abel-Jacobi map $E \mapsto \Phi^2_X(c_2(E) - 2l)$.

Then, we consider $M = \bigcup_{t \in \mathbb{P}^1} M_t$ and construct a object P over M parametrizing curves in X_t . We want to find some family of curves in P defining the same section with φ_β via the Abel-Jacobi map. Then, the surface swept out by the family of curves maps to class of $\alpha + kS$ for some k via τ and it implies that α is algebraic.

 $P \to M$ is constructed as following. The fibre over $E_s \in M_t$ is $\mathbb{P}(H^0(X_t, E_s(k)))$ for a sufficiently large k. For a general section in $H^0(X_t, E_s(k))$, its zero locus is a curve,. Hence P parametrizes curves in X_t and compatible with the Abel-Jacobi map.

Then, it is enough to show that the section φ_{β} can be lift to a section $B \to P$ via $P \to M \to \mathcal{J}^3$. It is due to M is birational to \mathcal{J}^3 and the Brauer group of a curve is trivial. That's complete the proof.